Difference between revisions of "Viète theorem"
Ulf Rehmann (talk | contribs) m (moved Viete theorem to Viète theorem over redirect: revert) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | v0966301.png | ||
+ | $#A+1 = 20 n = 0 | ||
+ | $#C+1 = 20 : ~/encyclopedia/old_files/data/V096/V.0906630 Vi\Agete theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''on roots'' | ''on roots'' | ||
− | A theorem which establishes relations between the roots and the coefficients of a [[Polynomial|polynomial]]. Let | + | A theorem which establishes relations between the roots and the coefficients of a [[Polynomial|polynomial]]. Let $ f( x) $ |
+ | be a polynomial of degree $ n $ | ||
+ | with coefficients from some field and with leading coefficient 1. The polynomial $ f( x) $ | ||
+ | splits over a field containing all the roots of $ f $( | ||
+ | e.g. over the splitting field of $ f( x) $, | ||
+ | cf. [[Splitting field of a polynomial|Splitting field of a polynomial]]) into linear factors: | ||
− | + | $$ | |
+ | f ( x) = x ^ {n} + a _ {n-} 1 x ^ {n-} 1 + \dots + a _ {1} x + a _ {0\ } = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | ( x - \alpha _ {1} ) \dots ( x - \alpha _ {n} ), | ||
+ | $$ | ||
− | where | + | where $ \alpha _ {i} $ |
+ | are the roots of $ f( x) $, | ||
+ | $ i = 1 \dots n $. | ||
+ | Viète's theorem asserts that the following relations (Viète's formulas) hold: | ||
− | + | $$ | |
+ | a _ {0} = (- 1) ^ {n} \alpha _ {1} \dots \alpha _ {n} , | ||
+ | $$ | ||
− | + | $$ | |
+ | a _ {1} = (- 1) ^ {n-} 1 ( \alpha _ {1} \alpha _ {2} \dots | ||
+ | \alpha _ {n-} 1 + \alpha _ {1} \dots \alpha _ {n-} 2 \alpha _ {n} + \dots | ||
+ | $$ | ||
− | + | $$ | |
+ | \dots | ||
+ | {} + \alpha _ {2} \alpha _ {3} \dots \alpha _ {n} ), | ||
+ | $$ | ||
− | + | $$ | |
+ | \dots \dots \dots \dots | ||
+ | $$ | ||
− | + | $$ | |
+ | a _ {n-} 2 = \alpha _ {1} \alpha _ {2} + \alpha _ {1} \alpha _ {3} + \dots + \alpha _ {n-} 1 \alpha _ {n} , | ||
+ | $$ | ||
− | + | $$ | |
+ | a _ {n-} 1 = - ( \alpha _ {1} + \dots + \alpha _ {n} ). | ||
+ | $$ | ||
− | F. Viète [[#References|[1]]] proved this relation for all | + | F. Viète [[#References|[1]]] proved this relation for all $ n $, |
+ | but for positive roots only; the general form of Viète's theorem was established by A. Girard [[#References|[2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> F. Viète, "Opera mathematica" F. van Schouten (ed.) , Leiden (1646)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Girard, "Invention nouvelle en l'algèbre" , Bierens de Haan , Leiden (1884) (Reprint)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> F. Viète, "Opera mathematica" F. van Schouten (ed.) , Leiden (1646)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Girard, "Invention nouvelle en l'algèbre" , Bierens de Haan , Leiden (1884) (Reprint)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | A polynomial with leading coefficient | + | A polynomial with leading coefficient $ 1 $ |
+ | is called monic. Up to sign, the expressions for $ \alpha _ {i} $ | ||
+ | in Viète's theorem are nowadays known as the (elementary) symmetric polynomials (of $ n $ | ||
+ | variables; cf. [[Symmetric polynomial|Symmetric polynomial]]). | ||
Viète's name is sometimes spelled Vièta: Vièta theorem. | Viète's name is sometimes spelled Vièta: Vièta theorem. |
Revision as of 08:28, 6 June 2020
on roots
A theorem which establishes relations between the roots and the coefficients of a polynomial. Let $ f( x) $ be a polynomial of degree $ n $ with coefficients from some field and with leading coefficient 1. The polynomial $ f( x) $ splits over a field containing all the roots of $ f $( e.g. over the splitting field of $ f( x) $, cf. Splitting field of a polynomial) into linear factors:
$$ f ( x) = x ^ {n} + a _ {n-} 1 x ^ {n-} 1 + \dots + a _ {1} x + a _ {0\ } = $$
$$ = \ ( x - \alpha _ {1} ) \dots ( x - \alpha _ {n} ), $$
where $ \alpha _ {i} $ are the roots of $ f( x) $, $ i = 1 \dots n $. Viète's theorem asserts that the following relations (Viète's formulas) hold:
$$ a _ {0} = (- 1) ^ {n} \alpha _ {1} \dots \alpha _ {n} , $$
$$ a _ {1} = (- 1) ^ {n-} 1 ( \alpha _ {1} \alpha _ {2} \dots \alpha _ {n-} 1 + \alpha _ {1} \dots \alpha _ {n-} 2 \alpha _ {n} + \dots $$
$$ \dots {} + \alpha _ {2} \alpha _ {3} \dots \alpha _ {n} ), $$
$$ \dots \dots \dots \dots $$
$$ a _ {n-} 2 = \alpha _ {1} \alpha _ {2} + \alpha _ {1} \alpha _ {3} + \dots + \alpha _ {n-} 1 \alpha _ {n} , $$
$$ a _ {n-} 1 = - ( \alpha _ {1} + \dots + \alpha _ {n} ). $$
F. Viète [1] proved this relation for all $ n $, but for positive roots only; the general form of Viète's theorem was established by A. Girard [2].
References
[1] | F. Viète, "Opera mathematica" F. van Schouten (ed.) , Leiden (1646) |
[2] | A. Girard, "Invention nouvelle en l'algèbre" , Bierens de Haan , Leiden (1884) (Reprint) |
Comments
A polynomial with leading coefficient $ 1 $ is called monic. Up to sign, the expressions for $ \alpha _ {i} $ in Viète's theorem are nowadays known as the (elementary) symmetric polynomials (of $ n $ variables; cf. Symmetric polynomial).
Viète's name is sometimes spelled Vièta: Vièta theorem.
References
[a1] | B.L. van der Waerden, "Algebra" , 1 , Springer (1967) (Translated from German) |
Viète theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vi%C3%A8te_theorem&oldid=49154