Difference between revisions of "Vector function"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | v0964501.png | ||
| + | $#A+1 = 26 n = 0 | ||
| + | $#C+1 = 26 : ~/encyclopedia/old_files/data/V096/V.0906450 Vector function | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | A function $ \mathbf r ( t) $ | |
| + | of an argument $ t $ | ||
| + | whose values belong to a [[Vector space|vector space]] $ V $. | ||
| − | A vector function is | + | A vector function with values in a finite-dimensional ( $ m $- |
| + | dimensional) vector space $ V $ | ||
| + | is completely determined by its components $ r _ {j} ( t) $, | ||
| + | $ 1 \leq j \leq m $, | ||
| + | with respect to some basis $ e _ {1} \dots e _ {m} $ | ||
| + | of $ V $: | ||
| − | + | $$ \tag{1 } | |
| + | \mathbf r ( t) = \ | ||
| + | \sum _ { j= } 1 ^ { m } r _ {j} ( t) \mathbf e _ {j} . | ||
| + | $$ | ||
| − | + | A vector function is said to be continuous, differentiable, etc. (at a point or in a domain) if all functions $ r _ {j} ( t) $ | |
| + | are continuous, differentiable, etc. The following formulas are valid for a function $ \mathbf r ( t) $ | ||
| + | of one variable: | ||
| − | + | $$ \tag{2 } | |
| − | + | \frac{d}{dt} | |
| + | \mathbf r ( t) = \ | ||
| + | \lim\limits _ {h \rightarrow 0 } | ||
| + | \frac{\mathbf r ( t+ h)- \mathbf r ( t) }{h} | ||
| + | = \ | ||
| + | \sum _ { j= } 1 ^ { m } r _ {j} ^ \prime ( t ) \mathbf e _ {j} , | ||
| + | $$ | ||
| + | |||
| + | $$ \tag{3 } | ||
| + | \int\limits _ { t _ {0} } ^ { {t _ 1 } } \mathbf r ( t) dt = \sum _ { j= } 1 ^ { m } \left ( \int\limits _ { t _ {0} } ^ { {t _ 1 } } r _ {j} ( t) dt \right ) \mathbf e _ {j} , | ||
| + | $$ | ||
| + | |||
| + | $$ | ||
| + | \mathbf r ( t) = \mathbf r ( t _ {0} ) + \sum _ { k= } 1 ^ { N } | ||
| + | |||
| + | \frac{1}{k!} | ||
| + | \mathbf r ^ {(} k) ( t _ {0} ) ( t- t _ {0} ) ^ {k} + | ||
| + | $$ | ||
| + | |||
| + | $$ | ||
| + | + | ||
| + | |||
| + | \frac{1}{N!} | ||
| + | \int\limits _ {t _ {0} } ^ { t } ( t- \tau ) ^ {N} {\mathbf r } ^ {(} N+ 1) ( \tau ) d \tau | ||
| + | $$ | ||
(Taylor's formula). | (Taylor's formula). | ||
| − | The set of vectors | + | The set of vectors $ \mathbf r ( t) $( |
| + | starting at zero in $ V $) | ||
| + | is called the hodograph of the vector function. The first derivative $ \dot{\mathbf r} ( t) $ | ||
| + | of a vector function of one real variable is a vector in $ V $ | ||
| + | tangent to the hodograph at the point $ \mathbf r ( t) $. | ||
| + | If $ \mathbf r ( t) $ | ||
| + | describes the motion of a point mass, where $ t $ | ||
| + | denotes the time, then $ \dot{\mathbf r} ( t) $ | ||
| + | is the instantaneous velocity vector of the point at the time $ t $. | ||
| + | The second derivative $ \dot{\mathbf r} dot ( t) $ | ||
| + | is the acceleration vector of the point. | ||
Partial derivatives and multiple integrals of vector functions of several variables are defined in analogy with formulas (2) and (3). See [[Vector analysis|Vector analysis]]; [[Gradient|Gradient]]; [[Divergence|Divergence]]; [[Curl|Curl]], for the concepts of vector analysis for vector functions. | Partial derivatives and multiple integrals of vector functions of several variables are defined in analogy with formulas (2) and (3). See [[Vector analysis|Vector analysis]]; [[Gradient|Gradient]]; [[Divergence|Divergence]]; [[Curl|Curl]], for the concepts of vector analysis for vector functions. | ||
| Line 25: | Line 79: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.E. Kochin, "Vector calculus and fundamentals of tensor calculus" , Moscow (1965) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.K. Rashevskii, "A course of differential geometry" , Moscow (1956) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.E. Kochin, "Vector calculus and fundamentals of tensor calculus" , Moscow (1965) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.K. Rashevskii, "A course of differential geometry" , Moscow (1956) (In Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Courant, F. John, "Introduction to calculus and analysis" , '''1''' , Wiley (Interscience) (1965)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.E. Marsden, A.J. Tromba, "Vector calculus" , Freeman (1981)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.A. Dieudonné, "Foundations of modern analysis" , Acad. Press (1960) (Translated from French)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Jeffrey, "Mathematics for scientists and engineers" , v. Nostrand-Reinhold (1989) pp. 493ff</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Courant, F. John, "Introduction to calculus and analysis" , '''1''' , Wiley (Interscience) (1965)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.E. Marsden, A.J. Tromba, "Vector calculus" , Freeman (1981)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.A. Dieudonné, "Foundations of modern analysis" , Acad. Press (1960) (Translated from French)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Jeffrey, "Mathematics for scientists and engineers" , v. Nostrand-Reinhold (1989) pp. 493ff</TD></TR></table> | ||
Revision as of 08:28, 6 June 2020
A function $ \mathbf r ( t) $
of an argument $ t $
whose values belong to a vector space $ V $.
A vector function with values in a finite-dimensional ( $ m $- dimensional) vector space $ V $ is completely determined by its components $ r _ {j} ( t) $, $ 1 \leq j \leq m $, with respect to some basis $ e _ {1} \dots e _ {m} $ of $ V $:
$$ \tag{1 } \mathbf r ( t) = \ \sum _ { j= } 1 ^ { m } r _ {j} ( t) \mathbf e _ {j} . $$
A vector function is said to be continuous, differentiable, etc. (at a point or in a domain) if all functions $ r _ {j} ( t) $ are continuous, differentiable, etc. The following formulas are valid for a function $ \mathbf r ( t) $ of one variable:
$$ \tag{2 } \frac{d}{dt} \mathbf r ( t) = \ \lim\limits _ {h \rightarrow 0 } \frac{\mathbf r ( t+ h)- \mathbf r ( t) }{h} = \ \sum _ { j= } 1 ^ { m } r _ {j} ^ \prime ( t ) \mathbf e _ {j} , $$
$$ \tag{3 } \int\limits _ { t _ {0} } ^ { {t _ 1 } } \mathbf r ( t) dt = \sum _ { j= } 1 ^ { m } \left ( \int\limits _ { t _ {0} } ^ { {t _ 1 } } r _ {j} ( t) dt \right ) \mathbf e _ {j} , $$
$$ \mathbf r ( t) = \mathbf r ( t _ {0} ) + \sum _ { k= } 1 ^ { N } \frac{1}{k!} \mathbf r ^ {(} k) ( t _ {0} ) ( t- t _ {0} ) ^ {k} + $$
$$ + \frac{1}{N!} \int\limits _ {t _ {0} } ^ { t } ( t- \tau ) ^ {N} {\mathbf r } ^ {(} N+ 1) ( \tau ) d \tau $$
(Taylor's formula).
The set of vectors $ \mathbf r ( t) $( starting at zero in $ V $) is called the hodograph of the vector function. The first derivative $ \dot{\mathbf r} ( t) $ of a vector function of one real variable is a vector in $ V $ tangent to the hodograph at the point $ \mathbf r ( t) $. If $ \mathbf r ( t) $ describes the motion of a point mass, where $ t $ denotes the time, then $ \dot{\mathbf r} ( t) $ is the instantaneous velocity vector of the point at the time $ t $. The second derivative $ \dot{\mathbf r} dot ( t) $ is the acceleration vector of the point.
Partial derivatives and multiple integrals of vector functions of several variables are defined in analogy with formulas (2) and (3). See Vector analysis; Gradient; Divergence; Curl, for the concepts of vector analysis for vector functions.
In an infinite-dimensional normed vector space with a basis, the representation of a vector function in the form (1) is an infinite series, and a coordinate-wise definition of the operations of mathematical analysis involves difficulties connected with the concepts of convergence of series, the possibility of term-by-term differentiation and integration, etc.
References
| [1] | N.E. Kochin, "Vector calculus and fundamentals of tensor calculus" , Moscow (1965) (In Russian) |
| [2] | P.K. Rashevskii, "A course of differential geometry" , Moscow (1956) (In Russian) |
Comments
References
| [a1] | R. Courant, F. John, "Introduction to calculus and analysis" , 1 , Wiley (Interscience) (1965) |
| [a2] | J.E. Marsden, A.J. Tromba, "Vector calculus" , Freeman (1981) |
| [a3] | J.A. Dieudonné, "Foundations of modern analysis" , Acad. Press (1960) (Translated from French) |
| [a4] | A. Jeffrey, "Mathematics for scientists and engineers" , v. Nostrand-Reinhold (1989) pp. 493ff |
Vector function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vector_function&oldid=49139