Namespaces
Variants
Actions

Difference between revisions of "Variation of constants"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
v0961601.png
 +
$#A+1 = 15 n = 0
 +
$#C+1 = 15 : ~/encyclopedia/old_files/data/V096/V.0906160 Variation of constants
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A method for solving inhomogeneous (non-homogeneous) linear ordinary differential systems (or equations). For an inhomogeneous system, this method makes it possible to write down in closed form the [[General solution|general solution]], if the general solution of the corresponding homogeneous system is known. The idea of the method of variation of constants is that the arbitrary constants participating in the general solution of the homogeneous system are replaced by functions of an independent variable. These functions must be chosen such that the inhomogeneous system is fulfilled. In concrete problems, this method was already applied by L. Euler and D. Bernoulli, but its complete elaboration was given by J.L. Lagrange [[#References|[1]]].
 
A method for solving inhomogeneous (non-homogeneous) linear ordinary differential systems (or equations). For an inhomogeneous system, this method makes it possible to write down in closed form the [[General solution|general solution]], if the general solution of the corresponding homogeneous system is known. The idea of the method of variation of constants is that the arbitrary constants participating in the general solution of the homogeneous system are replaced by functions of an independent variable. These functions must be chosen such that the inhomogeneous system is fulfilled. In concrete problems, this method was already applied by L. Euler and D. Bernoulli, but its complete elaboration was given by J.L. Lagrange [[#References|[1]]].
  
 
Suppose one considers the [[Cauchy problem|Cauchy problem]] for the inhomogeneous linear system
 
Suppose one considers the [[Cauchy problem|Cauchy problem]] for the inhomogeneous linear system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096160/v0961601.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\dot{x}  = A ( t) x + f ( t) ,\  x ( t _ {0} )  = x _ {0} ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096160/v0961602.png" /></td> </tr></table>
+
$$
 +
A : ( \alpha , \beta )  \rightarrow  \mathop{\rm Hom} ( \mathbf R  ^ {n} , \mathbf R  ^ {n} ),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096160/v0961603.png" /></td> </tr></table>
+
$$
 +
f : ( \alpha , \beta )  \rightarrow  \mathbf R  ^ {n}
 +
$$
  
are mappings that are summable on every finite interval, and where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096160/v0961604.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096160/v0961605.png" /> is the fundamental matrix solution (cf. [[Fundamental solution|Fundamental solution]]) of the homogeneous system
+
are mappings that are summable on every finite interval, and where $  t _ {0} \in ( \alpha , \beta ) $.  
 +
If $  \Phi ( t) $
 +
is the fundamental matrix solution (cf. [[Fundamental solution|Fundamental solution]]) of the homogeneous system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096160/v0961606.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\dot{y}  = A ( t) y ,
 +
$$
  
then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096160/v0961607.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096160/v0961608.png" />, is the general solution of (2). The method of variation of constants consists of a change of variable in (1):
+
then $  y = \Phi ( t) c $,  
 +
$  c \in \mathbf R  ^ {n} $,  
 +
is the general solution of (2). The method of variation of constants consists of a change of variable in (1):
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096160/v0961609.png" /></td> </tr></table>
+
$$
 +
= \Phi ( t) u ,
 +
$$
  
 
and leads to the Cauchy formula for the solution of (1):
 
and leads to the Cauchy formula for the solution of (1):
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096160/v09616010.png" /></td> </tr></table>
+
$$
 +
= \Phi ( t) \Phi  ^ {-} 1 ( t _ {0} ) x _ {0} + \Phi ( t) \int\limits _ {t _ {0}  } ^ { t }  \Phi  ^ {-} 1 ( \tau ) f ( \tau )  d \tau .
 +
$$
  
 
This formula is sometimes called the formula of variation of constants (cf. also [[Linear ordinary differential equation|Linear ordinary differential equation]]).
 
This formula is sometimes called the formula of variation of constants (cf. also [[Linear ordinary differential equation|Linear ordinary differential equation]]).
  
The idea of the method of variation of constants can sometimes be used in a more general non-linear situation for the description of the relation between the solution of a perturbed complete system and that of an unperturbed truncated system (cf. [[#References|[3]]], [[#References|[4]]]). E.g., for the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096160/v09616011.png" /> of the problem
+
The idea of the method of variation of constants can sometimes be used in a more general non-linear situation for the description of the relation between the solution of a perturbed complete system and that of an unperturbed truncated system (cf. [[#References|[3]]], [[#References|[4]]]). E.g., for the solution $  x ( t) $
 +
of the problem
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096160/v09616012.png" /></td> </tr></table>
+
$$
 +
\dot{x}  = A ( t) x + f ( t , x ) ,\  x ( t _ {0} )  = x _ {0}  $$
  
(where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096160/v09616013.png" /> are continuous mappings and in the case of uniqueness of a solution) the formula of variation of constants is valid. It takes the form of the integral equation
+
(where $  A , f $
 +
are continuous mappings and in the case of uniqueness of a solution) the formula of variation of constants is valid. It takes the form of the integral equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096160/v09616014.png" /></td> </tr></table>
+
$$
 +
x ( t)  = \Phi ( t) \Phi  ^ {-} 1 ( t _ {0} ) x _ {0} + \Phi ( t) \int\limits _ {t _ {0} } ^ { t }  \Phi  ^ {-} 1 ( \tau ) f ( \tau , x ( \tau ) )  d \tau .
 +
$$
  
In it, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096160/v09616015.png" /> is the fundamental matrix solution of (2).
+
In it, $  \Phi ( t) $
 +
is the fundamental matrix solution of (2).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.L. Lagrange,  , ''Oeuvres'' , '''4''' , Paris  (1869)  pp. 151–251</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.S. Pontryagin,  "Ordinary differential equations" , Addison-Wesley  (1962)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.M. Alekseev,  "An estimate for the perturbations of the solutions of ordinary differential equations"  ''Vestnik Moskov. Univ.'' , '''2'''  (1961)  pp. 28–36  (In Russian)  (English abstract)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  L.E. Reizin',  "Local equivalence of differential equations" , Riga  (1971)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.L. Lagrange,  , ''Oeuvres'' , '''4''' , Paris  (1869)  pp. 151–251</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.S. Pontryagin,  "Ordinary differential equations" , Addison-Wesley  (1962)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.M. Alekseev,  "An estimate for the perturbations of the solutions of ordinary differential equations"  ''Vestnik Moskov. Univ.'' , '''2'''  (1961)  pp. 28–36  (In Russian)  (English abstract)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  L.E. Reizin',  "Local equivalence of differential equations" , Riga  (1971)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Hille,  "Lectures on ordinary differential equations" , Addison-Wesley  (1964)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E.A. Coddington,  N. Levinson,  "Theory of ordinary differential equations" , McGraw-Hill  (1955)  pp. Chapts. 13–17</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J.K. Hale,  "Ordinary differential equations" , Wiley  (1980)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  W.A. Coppel,  "Disconjugacy" , Springer  (1971)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Hille,  "Lectures on ordinary differential equations" , Addison-Wesley  (1964)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E.A. Coddington,  N. Levinson,  "Theory of ordinary differential equations" , McGraw-Hill  (1955)  pp. Chapts. 13–17</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J.K. Hale,  "Ordinary differential equations" , Wiley  (1980)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  W.A. Coppel,  "Disconjugacy" , Springer  (1971)</TD></TR></table>

Revision as of 08:27, 6 June 2020


A method for solving inhomogeneous (non-homogeneous) linear ordinary differential systems (or equations). For an inhomogeneous system, this method makes it possible to write down in closed form the general solution, if the general solution of the corresponding homogeneous system is known. The idea of the method of variation of constants is that the arbitrary constants participating in the general solution of the homogeneous system are replaced by functions of an independent variable. These functions must be chosen such that the inhomogeneous system is fulfilled. In concrete problems, this method was already applied by L. Euler and D. Bernoulli, but its complete elaboration was given by J.L. Lagrange [1].

Suppose one considers the Cauchy problem for the inhomogeneous linear system

$$ \tag{1 } \dot{x} = A ( t) x + f ( t) ,\ x ( t _ {0} ) = x _ {0} , $$

where

$$ A : ( \alpha , \beta ) \rightarrow \mathop{\rm Hom} ( \mathbf R ^ {n} , \mathbf R ^ {n} ), $$

$$ f : ( \alpha , \beta ) \rightarrow \mathbf R ^ {n} $$

are mappings that are summable on every finite interval, and where $ t _ {0} \in ( \alpha , \beta ) $. If $ \Phi ( t) $ is the fundamental matrix solution (cf. Fundamental solution) of the homogeneous system

$$ \tag{2 } \dot{y} = A ( t) y , $$

then $ y = \Phi ( t) c $, $ c \in \mathbf R ^ {n} $, is the general solution of (2). The method of variation of constants consists of a change of variable in (1):

$$ x = \Phi ( t) u , $$

and leads to the Cauchy formula for the solution of (1):

$$ x = \Phi ( t) \Phi ^ {-} 1 ( t _ {0} ) x _ {0} + \Phi ( t) \int\limits _ {t _ {0} } ^ { t } \Phi ^ {-} 1 ( \tau ) f ( \tau ) d \tau . $$

This formula is sometimes called the formula of variation of constants (cf. also Linear ordinary differential equation).

The idea of the method of variation of constants can sometimes be used in a more general non-linear situation for the description of the relation between the solution of a perturbed complete system and that of an unperturbed truncated system (cf. [3], [4]). E.g., for the solution $ x ( t) $ of the problem

$$ \dot{x} = A ( t) x + f ( t , x ) ,\ x ( t _ {0} ) = x _ {0} $$

(where $ A , f $ are continuous mappings and in the case of uniqueness of a solution) the formula of variation of constants is valid. It takes the form of the integral equation

$$ x ( t) = \Phi ( t) \Phi ^ {-} 1 ( t _ {0} ) x _ {0} + \Phi ( t) \int\limits _ {t _ {0} } ^ { t } \Phi ^ {-} 1 ( \tau ) f ( \tau , x ( \tau ) ) d \tau . $$

In it, $ \Phi ( t) $ is the fundamental matrix solution of (2).

References

[1] J.L. Lagrange, , Oeuvres , 4 , Paris (1869) pp. 151–251
[2] L.S. Pontryagin, "Ordinary differential equations" , Addison-Wesley (1962) (Translated from Russian)
[3] V.M. Alekseev, "An estimate for the perturbations of the solutions of ordinary differential equations" Vestnik Moskov. Univ. , 2 (1961) pp. 28–36 (In Russian) (English abstract)
[4] L.E. Reizin', "Local equivalence of differential equations" , Riga (1971) (In Russian)

Comments

References

[a1] E. Hille, "Lectures on ordinary differential equations" , Addison-Wesley (1964)
[a2] E.A. Coddington, N. Levinson, "Theory of ordinary differential equations" , McGraw-Hill (1955) pp. Chapts. 13–17
[a3] J.K. Hale, "Ordinary differential equations" , Wiley (1980)
[a4] W.A. Coppel, "Disconjugacy" , Springer (1971)
How to Cite This Entry:
Variation of constants. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Variation_of_constants&oldid=49118
This article was adapted from an original article by N.Kh. Rozov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article