Difference between revisions of "Variation of a mapping"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | v0961301.png | ||
+ | $#A+1 = 33 n = 0 | ||
+ | $#C+1 = 33 : ~/encyclopedia/old_files/data/V096/V.0906130 Variation of a mapping | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A numerical characteristic of a mapping connected with its differentiability properties. Defined by S. Banach [[#References|[1]]]. The definition given below applies to the two-dimensional case only. Consider the mapping | A numerical characteristic of a mapping connected with its differentiability properties. Defined by S. Banach [[#References|[1]]]. The definition given below applies to the two-dimensional case only. Consider the mapping | ||
− | + | $$ | |
+ | \alpha : x = f( u, v),\ y = \phi ( u, v), | ||
+ | $$ | ||
− | where | + | where f |
+ | and \phi | ||
+ | are continuous functions on the square $ D _ {0} = [ 0, 1] \times [ 0, 1] $. | ||
+ | One says that the mapping \alpha | ||
+ | is of bounded variation if there exists a number $ M > 0 $ | ||
+ | such that for any sequences non-intersecting squares $ D ^ {i} \subset D _ {0} $( | ||
+ | $ i = 1, 2 , . . . $), | ||
+ | with sides parallel to the coordinate axes $ u , v $, | ||
+ | the inequality | ||
− | + | $$ | |
+ | \sum _ { i } \mathop{\rm mes} D _ {xy} ^ {i} \leq M | ||
+ | $$ | ||
− | is true. Here | + | is true. Here E _ {xy} |
+ | denotes the image of a set $ E \subset D _ {0} $ | ||
+ | under the mapping \alpha , | ||
+ | and \mathop{\rm mes} E | ||
+ | is the plane [[Lebesgue measure|Lebesgue measure]] of E . | ||
+ | The numerical value V( \alpha ) | ||
+ | of the variation of \alpha | ||
+ | may be determined in various ways. For instance, let \alpha | ||
+ | be of bounded variation. The variation V ( \alpha ) | ||
+ | may then be determined by the formula | ||
− | + | $$ | |
+ | V( \alpha ) = \int\limits _ {- \infty } ^ { {+ } \infty } | ||
+ | \int\limits _ {- \infty } ^ { {+ } \infty } N( s, t) ds dt , | ||
+ | $$ | ||
− | where | + | where N( s, t) |
+ | is the number of solutions of the system $ f( u, v) = s $, | ||
+ | $ \phi ( u, v) = t $( | ||
+ | the Banach indicatrix of \alpha ). | ||
− | If | + | If \alpha |
+ | is of bounded variation, then, almost-everywhere on $ D _ {0} $, | ||
+ | the generalized Jacobian J( P) ( | ||
+ | $ P \in {D _ {0} } $) | ||
+ | exists, and it is integrable on $ D _ {0} $; | ||
+ | also, | ||
− | + | $$ | |
+ | J( P) = \lim\limits _ { \mathop{\rm mes} K \rightarrow 0 } | ||
+ | |||
+ | \frac{ \mathop{\rm mes} K _ {xy} }{ \mathop{\rm mes} K } | ||
+ | , | ||
+ | $$ | ||
− | where | + | where $ K \subset D _ {0} $ |
+ | is a square containing the point $ P \in D _ {0} $ | ||
+ | with sides parallel to the axes $ u , v $[[#References|[2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Banach, "Sur les lignes rectifiables et les surfaces dont l'aire est finie" ''Fund. Math.'' , '''7''' (1925) pp. 225–236</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.D. Kudryavtsev, "The variation of mappings in regions" , ''Metric questions in the theory of functions and mappings'' , '''1''' , Kiev (1969) pp. 34–108 (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Banach, "Sur les lignes rectifiables et les surfaces dont l'aire est finie" ''Fund. Math.'' , '''7''' (1925) pp. 225–236</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.D. Kudryavtsev, "The variation of mappings in regions" , ''Metric questions in the theory of functions and mappings'' , '''1''' , Kiev (1969) pp. 34–108 (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French)</TD></TR></table> |
Revision as of 08:27, 6 June 2020
A numerical characteristic of a mapping connected with its differentiability properties. Defined by S. Banach [1]. The definition given below applies to the two-dimensional case only. Consider the mapping
\alpha : x = f( u, v),\ y = \phi ( u, v),
where f and \phi are continuous functions on the square D _ {0} = [ 0, 1] \times [ 0, 1] . One says that the mapping \alpha is of bounded variation if there exists a number M > 0 such that for any sequences non-intersecting squares D ^ {i} \subset D _ {0} ( i = 1, 2 , . . . ), with sides parallel to the coordinate axes u , v , the inequality
\sum _ { i } \mathop{\rm mes} D _ {xy} ^ {i} \leq M
is true. Here E _ {xy} denotes the image of a set E \subset D _ {0} under the mapping \alpha , and \mathop{\rm mes} E is the plane Lebesgue measure of E . The numerical value V( \alpha ) of the variation of \alpha may be determined in various ways. For instance, let \alpha be of bounded variation. The variation V ( \alpha ) may then be determined by the formula
V( \alpha ) = \int\limits _ {- \infty } ^ { {+ } \infty } \int\limits _ {- \infty } ^ { {+ } \infty } N( s, t) ds dt ,
where N( s, t) is the number of solutions of the system f( u, v) = s , \phi ( u, v) = t ( the Banach indicatrix of \alpha ).
If \alpha is of bounded variation, then, almost-everywhere on D _ {0} , the generalized Jacobian J( P) ( P \in {D _ {0} } ) exists, and it is integrable on D _ {0} ; also,
J( P) = \lim\limits _ { \mathop{\rm mes} K \rightarrow 0 } \frac{ \mathop{\rm mes} K _ {xy} }{ \mathop{\rm mes} K } ,
where K \subset D _ {0} is a square containing the point P \in D _ {0} with sides parallel to the axes u , v [2].
References
[1] | S. Banach, "Sur les lignes rectifiables et les surfaces dont l'aire est finie" Fund. Math. , 7 (1925) pp. 225–236 |
[2] | L.D. Kudryavtsev, "The variation of mappings in regions" , Metric questions in the theory of functions and mappings , 1 , Kiev (1969) pp. 34–108 (In Russian) |
Comments
References
[a1] | S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) |
Variation of a mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Variation_of_a_mapping&oldid=49115