Namespaces
Variants
Actions

Difference between revisions of "Two-liquid plasma model"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
t0945601.png
 +
$#A+1 = 20 n = 0
 +
$#C+1 = 20 : ~/encyclopedia/old_files/data/T094/T.0904560 Two\AAhliquid plasma model
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A hydrodynamic model in which the plasma is regarded as made up of two  "liquids"  (electric and ionic liquids) moving through each other. The electrical resistance of the plasma is considered to be the result of the mutual friction between these liquids.
 
A hydrodynamic model in which the plasma is regarded as made up of two  "liquids"  (electric and ionic liquids) moving through each other. The electrical resistance of the plasma is considered to be the result of the mutual friction between these liquids.
  
On the assumption that the electrons are acted upon solely by the electron pressure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t0945601.png" />, while the ions are acted upon solely by the ion pressure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t0945602.png" />, the set of equations of motion has the form
+
On the assumption that the electrons are acted upon solely by the electron pressure $  p _ {e} $,  
 +
while the ions are acted upon solely by the ion pressure $  p _ {i} $,  
 +
the set of equations of motion has the form
 +
 
 +
$$ \tag{1 }
 +
 
 +
\frac{dm \mathbf V _ {e} }{dt}
 +
  =  - e \left ( \mathbf E -
 +
\frac{1}{c}
 +
 
 +
[ \mathbf V _ {e} \times \mathbf H ] \right ) -
 +
\frac{\nabla p _ {e} }{n _ {e} }
 +
- Rn _ {i} ( \mathbf V _ {e} - \mathbf V _ {i} ) ,
 +
$$
 +
 
 +
$$ \tag{2 }
 +
 
 +
\frac{dM \mathbf V _ {i} }{dt}
 +
  =  Z e \left ( \mathbf E +
 +
\frac{1}{c}
 +
 
 +
[ \mathbf V _ {i} \times \mathbf H ] \right ) -
 +
\frac{\nabla p _ {i} }{n _ {i} }
 +
- Rn _ {e} ( \mathbf V _ {i} - \mathbf V _ {e} ) .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t0945603.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
The interaction between electrons and ions is allowed for by way of a friction force which is proportional to the product of the velocity difference by the concentration of the motion-retarding particles. The quantity  $  R $
 +
is called the mutual friction coefficient or the coefficient of diffusional resistance. In view of the quasi-neutrality of the plasma ( $  n _ {e} = Zn _ {i} = n $),
 +
the equation of motion of the two-liquid plasma model is reduced to the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t0945604.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$
  
The interaction between electrons and ions is allowed for by way of a friction force which is proportional to the product of the velocity difference by the concentration of the motion-retarding particles. The quantity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t0945605.png" /> is called the mutual friction coefficient or the coefficient of diffusional resistance. In view of the quasi-neutrality of the plasma (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t0945606.png" />), the equation of motion of the two-liquid plasma model is reduced to the form
+
\frac{d \mathbf V }{dt}
 +
  = -  
 +
\frac{1} \rho
 +
\nabla p +
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t0945607.png" /></td> </tr></table>
+
\frac{1}{\rho c }
 +
[ \mathbf j \times \mathbf H ] ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t0945608.png" /></td> </tr></table>
+
$$
 +
\mathbf V  =
 +
\frac{n _ {i} M \mathbf V _ {i} + n _ {e} m \mathbf V _ {e} }{M n _ {i} + mn _ {e} }
 +
 
 +
$$
 +
 
 +
is the average mass velocity,  $  p = p _ {i} + p _ {e} $
 +
is the total pressure, while  $  \mathbf j = e ( Z n _ {i} \mathbf V _ {i} - n _ {e} \mathbf V _ {e} ) $
 +
is the ionic current. If  $  m / M \ll  1 $,
 +
then  $  \mathbf V _ {i} \approx \mathbf V $,
 +
$  \mathbf V _ {e} \approx \mathbf V - \mathbf j / ne $.
  
is the average mass velocity, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t0945609.png" /> is the total pressure, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t09456010.png" /> is the ionic current. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t09456011.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t09456012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t09456013.png" />.
+
Equations (1) and (2) may be employed to obtain the generalized Ohm law, interconnecting the current density of  $  \mathbf j $
 +
with other quantities. If the terms of the form  $  ( \mathbf V _  \nabla  ) \mathbf V $
 +
can be neglected (and also if  $  m / M \ll  1 $),  
 +
the generalized Ohm law can be written as
  
Equations (1) and (2) may be employed to obtain the generalized Ohm law, interconnecting the current density of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t09456014.png" /> with other quantities. If the terms of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t09456015.png" /> can be neglected (and also if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t09456016.png" />), the generalized Ohm law can be written as
+
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t09456017.png" /></td> </tr></table>
+
\frac{d \mathbf j }{dt}
 +
  =
 +
\frac{ne  ^ {2} }{m}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t09456018.png" /> is the so-called pulse transmission time and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t09456019.png" /> is the effective frequency of pulse transmission, defined by the expression:
+
\left ( \mathbf E +
 +
\frac{1}{c}
 +
[ \mathbf V \times \mathbf H ] \right )
 +
-  
 +
\frac{e}{mc}
 +
[ \mathbf j \times \mathbf H ] +
 +
\frac{e}{m}
 +
\nabla p _ {e} -
 +
\frac{\mathbf j } \tau
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094560/t09456020.png" /></td> </tr></table>
+
where  $  \tau = 1 / \nu _ {ei} $
 +
is the so-called pulse transmission time and  $  \nu _ {ei} $
 +
is the effective frequency of pulse transmission, defined by the expression:
 +
 
 +
$$
 +
=
 +
\frac{m}{n _ {i} }
 +
\nu _ {ei}  =
 +
\frac{m}{n _ {e} }
 +
\nu _ {ie} .
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D.A. Frank-Kamenetskii,  "Lectures on plasma physics" , Moscow  (1968)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.G. Kulikovskii,  G.A. Lyubimov,  "Magnetic hydrodynamics" , Moscow  (1962)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D.A. Frank-Kamenetskii,  "Lectures on plasma physics" , Moscow  (1968)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.G. Kulikovskii,  G.A. Lyubimov,  "Magnetic hydrodynamics" , Moscow  (1962)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N.G. van Kampen,  B.U. Felderhof,  "Theoretical methods in plasma physics" , North-Holland  (1967)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  L. Spitzer,  "Physics of fully ionized gases" , Interscience  (1962)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N.G. van Kampen,  B.U. Felderhof,  "Theoretical methods in plasma physics" , North-Holland  (1967)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  L. Spitzer,  "Physics of fully ionized gases" , Interscience  (1962)</TD></TR></table>

Latest revision as of 08:27, 6 June 2020


A hydrodynamic model in which the plasma is regarded as made up of two "liquids" (electric and ionic liquids) moving through each other. The electrical resistance of the plasma is considered to be the result of the mutual friction between these liquids.

On the assumption that the electrons are acted upon solely by the electron pressure $ p _ {e} $, while the ions are acted upon solely by the ion pressure $ p _ {i} $, the set of equations of motion has the form

$$ \tag{1 } \frac{dm \mathbf V _ {e} }{dt} = - e \left ( \mathbf E - \frac{1}{c} [ \mathbf V _ {e} \times \mathbf H ] \right ) - \frac{\nabla p _ {e} }{n _ {e} } - Rn _ {i} ( \mathbf V _ {e} - \mathbf V _ {i} ) , $$

$$ \tag{2 } \frac{dM \mathbf V _ {i} }{dt} = Z e \left ( \mathbf E + \frac{1}{c} [ \mathbf V _ {i} \times \mathbf H ] \right ) - \frac{\nabla p _ {i} }{n _ {i} } - Rn _ {e} ( \mathbf V _ {i} - \mathbf V _ {e} ) . $$

The interaction between electrons and ions is allowed for by way of a friction force which is proportional to the product of the velocity difference by the concentration of the motion-retarding particles. The quantity $ R $ is called the mutual friction coefficient or the coefficient of diffusional resistance. In view of the quasi-neutrality of the plasma ( $ n _ {e} = Zn _ {i} = n $), the equation of motion of the two-liquid plasma model is reduced to the form

$$ \frac{d \mathbf V }{dt} = - \frac{1} \rho \nabla p + \frac{1}{\rho c } [ \mathbf j \times \mathbf H ] , $$

where

$$ \mathbf V = \frac{n _ {i} M \mathbf V _ {i} + n _ {e} m \mathbf V _ {e} }{M n _ {i} + mn _ {e} } $$

is the average mass velocity, $ p = p _ {i} + p _ {e} $ is the total pressure, while $ \mathbf j = e ( Z n _ {i} \mathbf V _ {i} - n _ {e} \mathbf V _ {e} ) $ is the ionic current. If $ m / M \ll 1 $, then $ \mathbf V _ {i} \approx \mathbf V $, $ \mathbf V _ {e} \approx \mathbf V - \mathbf j / ne $.

Equations (1) and (2) may be employed to obtain the generalized Ohm law, interconnecting the current density of $ \mathbf j $ with other quantities. If the terms of the form $ ( \mathbf V _ \nabla ) \mathbf V $ can be neglected (and also if $ m / M \ll 1 $), the generalized Ohm law can be written as

$$ \frac{d \mathbf j }{dt} = \frac{ne ^ {2} }{m} \left ( \mathbf E + \frac{1}{c} [ \mathbf V \times \mathbf H ] \right ) - \frac{e}{mc} [ \mathbf j \times \mathbf H ] + \frac{e}{m} \nabla p _ {e} - \frac{\mathbf j } \tau , $$

where $ \tau = 1 / \nu _ {ei} $ is the so-called pulse transmission time and $ \nu _ {ei} $ is the effective frequency of pulse transmission, defined by the expression:

$$ R = \frac{m}{n _ {i} } \nu _ {ei} = \frac{m}{n _ {e} } \nu _ {ie} . $$

References

[1] D.A. Frank-Kamenetskii, "Lectures on plasma physics" , Moscow (1968) (In Russian)
[2] A.G. Kulikovskii, G.A. Lyubimov, "Magnetic hydrodynamics" , Moscow (1962) (In Russian)

Comments

References

[a1] N.G. van Kampen, B.U. Felderhof, "Theoretical methods in plasma physics" , North-Holland (1967)
[a2] L. Spitzer, "Physics of fully ionized gases" , Interscience (1962)
How to Cite This Entry:
Two-liquid plasma model. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Two-liquid_plasma_model&oldid=49055
This article was adapted from an original article by V.A. Dorodnitsyn (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article