Difference between revisions of "Trigonometric sum"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | t0942501.png | ||
+ | $#A+1 = 32 n = 0 | ||
+ | $#C+1 = 32 : ~/encyclopedia/old_files/data/T094/T.0904250 Trigonometric sum | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A finite sum $ S $ | |
+ | of the form | ||
− | + | $$ | |
+ | S = \sum _ {x = 1 } ^ { P } e ^ {2 \pi iF ( x) } , | ||
+ | $$ | ||
− | where | + | where $ P \geq 1 $ |
+ | is an integer and $ F $ | ||
+ | is a real-valued function of $ x $. | ||
+ | More general sums $ \widetilde{S} $ | ||
+ | of the following form are also called trigonometric sums: | ||
− | + | $$ | |
+ | \widetilde{S} = \ | ||
+ | \sum _ { x _ {1} = 1 } ^ { {P _ 1 } } \dots | ||
+ | \sum _ { x _ {r} = 1 } ^ { {P _ r } } | ||
+ | \Phi ( x _ {1} \dots x _ {r} ) | ||
+ | e ^ {2 \pi iF ( x _ {1} \dots x _ {r} ) } , | ||
+ | $$ | ||
− | + | where $ F $ | |
+ | is a real-valued function and $ \Phi $ | ||
+ | is an arbitrary complex-valued function. | ||
− | then | + | If $ F $ |
+ | is a polynomial, then $ S $ | ||
+ | is called a [[Weyl sum|Weyl sum]]; if the polynomial $ F $ | ||
+ | has rational coefficients, | ||
+ | |||
+ | $$ | ||
+ | F ( x) = \ | ||
+ | |||
+ | \frac{a _ {n} x ^ {n} + \dots + a _ {1} x }{q } | ||
+ | ,\ \ | ||
+ | ( a _ {n} \dots a _ {1} , q) = 1, | ||
+ | $$ | ||
+ | |||
+ | then $ S $ | ||
+ | is called a rational trigonometric sum; if $ P = q $, | ||
+ | then $ \widetilde{S} $ | ||
+ | is called a complete trigonometric sum; if $ r = 1 $ | ||
+ | and $ \Phi ( x _ {1} ) = 1 $ | ||
+ | when $ x _ {1} $ | ||
+ | is a prime number while $ \Phi ( x _ {1} ) = 0 $ | ||
+ | when $ x _ {1} $ | ||
+ | is a composite number, then $ S $ | ||
+ | is called a trigonometric sum over prime numbers; if $ r \geq 1 $, | ||
+ | $ \Phi \equiv 1 $ | ||
+ | and $ F $ | ||
+ | is a polynomial, then $ \widetilde{S} $ | ||
+ | is called a multiple Weyl sum. A basic problem in the theory of trigonometric sums is that of finding upper bounds for the moduli of $ S $ | ||
+ | and $ \widetilde{S} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Vinogradov, , ''Selected works'' , Springer (1985) (Translated from Russian) {{MR|0807530}} {{ZBL|0577.01049}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.M. Vinogradov, "The method of trigonometric sums in the theory of numbers" , Interscience (1954) (Translated from Russian) {{MR|0603100}} {{MR|0409380}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.M. Vinogradov, "Basic variants of the method of trigonometric sums" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , ''Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'' , '''1''' : 2 , Teubner (1959) (Heft 13, Teil 1) {{MR|}} {{ZBL|0083.03601}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E.C. Titchmarsh, "The theory of the Riemann zeta-function" , Clarendon Press (1951) {{MR|0046485}} {{ZBL|0042.07901}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> G.I. Archipov, A.A. Karatsuba, V.N. Chubarikov, "Multiple trigonometric sums" , Amer. Math. Soc. (1982) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Vinogradov, , ''Selected works'' , Springer (1985) (Translated from Russian) {{MR|0807530}} {{ZBL|0577.01049}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.M. Vinogradov, "The method of trigonometric sums in the theory of numbers" , Interscience (1954) (Translated from Russian) {{MR|0603100}} {{MR|0409380}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.M. Vinogradov, "Basic variants of the method of trigonometric sums" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , ''Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'' , '''1''' : 2 , Teubner (1959) (Heft 13, Teil 1) {{MR|}} {{ZBL|0083.03601}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E.C. Titchmarsh, "The theory of the Riemann zeta-function" , Clarendon Press (1951) {{MR|0046485}} {{ZBL|0042.07901}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> G.I. Archipov, A.A. Karatsuba, V.N. Chubarikov, "Multiple trigonometric sums" , Amer. Math. Soc. (1982) (Translated from Russian)</TD></TR></table> | ||
+ | ====Comments==== | ||
+ | Instead of "trigonometric sum" one also uses "exponential sumexponential sum" . A complete rational exponential sum of degree $ 2 $, | ||
+ | $$ | ||
+ | S( q) = \sum _ { x= } 1 ^ { q } e ^ {2 \pi i | ||
− | + | \frac{ax ^ {2} }{q} | |
− | + | } , | |
+ | $$ | ||
− | + | is called a [[Gauss sum|Gauss sum]]. A Kloosterman sum is an exponential sum of the form | |
− | + | $$ | |
+ | K( u, v, q ) = \sum _ {\begin{array}{c} | ||
+ | x= 1 \\ | ||
+ | ( x, q)= 1 | ||
+ | \end{array} | ||
+ | } | ||
+ | \mathop{\rm exp} \left ( | ||
− | + | \frac{2 \pi i }{q} | |
+ | \left ( ux + | ||
+ | \frac{v}{x} | ||
+ | \right ) \right ) ,\ \ | ||
+ | u , v \in \mathbf Z . | ||
+ | $$ | ||
− | For these there is Weil's estimate | + | For these there is Weil's estimate $ | K( u, v, p ) | \leq 2 \sqrt p $. |
Besides in number theory (cf. also [[Trigonometric sums, method of|Trigonometric sums, method of]]), exponential sums play important roles in other fields, e.g. algebraic geometry, modular functions, quadrature formulas, monodromy, [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]]. | Besides in number theory (cf. also [[Trigonometric sums, method of|Trigonometric sums, method of]]), exponential sums play important roles in other fields, e.g. algebraic geometry, modular functions, quadrature formulas, monodromy, [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]]. |
Latest revision as of 08:26, 6 June 2020
A finite sum $ S $
of the form
$$ S = \sum _ {x = 1 } ^ { P } e ^ {2 \pi iF ( x) } , $$
where $ P \geq 1 $ is an integer and $ F $ is a real-valued function of $ x $. More general sums $ \widetilde{S} $ of the following form are also called trigonometric sums:
$$ \widetilde{S} = \ \sum _ { x _ {1} = 1 } ^ { {P _ 1 } } \dots \sum _ { x _ {r} = 1 } ^ { {P _ r } } \Phi ( x _ {1} \dots x _ {r} ) e ^ {2 \pi iF ( x _ {1} \dots x _ {r} ) } , $$
where $ F $ is a real-valued function and $ \Phi $ is an arbitrary complex-valued function.
If $ F $ is a polynomial, then $ S $ is called a Weyl sum; if the polynomial $ F $ has rational coefficients,
$$ F ( x) = \ \frac{a _ {n} x ^ {n} + \dots + a _ {1} x }{q } ,\ \ ( a _ {n} \dots a _ {1} , q) = 1, $$
then $ S $ is called a rational trigonometric sum; if $ P = q $, then $ \widetilde{S} $ is called a complete trigonometric sum; if $ r = 1 $ and $ \Phi ( x _ {1} ) = 1 $ when $ x _ {1} $ is a prime number while $ \Phi ( x _ {1} ) = 0 $ when $ x _ {1} $ is a composite number, then $ S $ is called a trigonometric sum over prime numbers; if $ r \geq 1 $, $ \Phi \equiv 1 $ and $ F $ is a polynomial, then $ \widetilde{S} $ is called a multiple Weyl sum. A basic problem in the theory of trigonometric sums is that of finding upper bounds for the moduli of $ S $ and $ \widetilde{S} $.
References
[1] | I.M. Vinogradov, , Selected works , Springer (1985) (Translated from Russian) MR0807530 Zbl 0577.01049 |
[2] | I.M. Vinogradov, "The method of trigonometric sums in the theory of numbers" , Interscience (1954) (Translated from Russian) MR0603100 MR0409380 |
[3] | I.M. Vinogradov, "Basic variants of the method of trigonometric sums" , Moscow (1976) (In Russian) |
[4] | L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen , 1 : 2 , Teubner (1959) (Heft 13, Teil 1) Zbl 0083.03601 |
[5] | E.C. Titchmarsh, "The theory of the Riemann zeta-function" , Clarendon Press (1951) MR0046485 Zbl 0042.07901 |
[6] | G.I. Archipov, A.A. Karatsuba, V.N. Chubarikov, "Multiple trigonometric sums" , Amer. Math. Soc. (1982) (Translated from Russian) |
Comments
Instead of "trigonometric sum" one also uses "exponential sumexponential sum" . A complete rational exponential sum of degree $ 2 $,
$$ S( q) = \sum _ { x= } 1 ^ { q } e ^ {2 \pi i \frac{ax ^ {2} }{q} } , $$
is called a Gauss sum. A Kloosterman sum is an exponential sum of the form
$$ K( u, v, q ) = \sum _ {\begin{array}{c} x= 1 \\ ( x, q)= 1 \end{array} } \mathop{\rm exp} \left ( \frac{2 \pi i }{q} \left ( ux + \frac{v}{x} \right ) \right ) ,\ \ u , v \in \mathbf Z . $$
For these there is Weil's estimate $ | K( u, v, p ) | \leq 2 \sqrt p $.
Besides in number theory (cf. also Trigonometric sums, method of), exponential sums play important roles in other fields, e.g. algebraic geometry, modular functions, quadrature formulas, monodromy, [a1], [a2], [a3].
References
[a1] | N.M. Korobov, "Exponential sums and their applications" , Kluwer (1992) (Translated from Russian) MR1162539 Zbl 0754.11022 |
[a2] | N.M. Katz, "Sommes exponentielles" , Soc. Math. France (1980) MR0617009 Zbl 0469.12007 |
[a3] | N.M. Katz, "Gauss sums, Kloosterman sums, and monodromy groups" , Princeton Univ. Press (1988) MR0955052 Zbl 0675.14004 |
Trigonometric sum. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Trigonometric_sum&oldid=49038