Difference between revisions of "Trefftz method"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | t0940701.png | ||
+ | $#A+1 = 16 n = 0 | ||
+ | $#C+1 = 16 : ~/encyclopedia/old_files/data/T094/T.0904070 Trefftz method | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
One of the variational methods for solving boundary value problems. Suppose one has to solve the boundary value problem | One of the variational methods for solving boundary value problems. Suppose one has to solve the boundary value problem | ||
− | + | $$ \tag{* } | |
+ | \Delta u = 0,\ \ | ||
+ | u \mid _ {S} = \phi , | ||
+ | $$ | ||
+ | |||
+ | where $ S $ | ||
+ | is the boundary of a domain $ \Omega \subset \mathbf R ^ {m} $. | ||
+ | The solution of the problem (*) minimizes the functional | ||
− | + | $$ | |
+ | J ( u) = \int\limits _ \Omega ( \mathop{\rm grad} u ( x)) ^ {2} dx | ||
+ | $$ | ||
− | + | over all functions satisfying the boundary condition $ u \mid _ {S} = \phi $. | |
+ | Trefftz' method consists in the following. Suppose one is given a sequence of harmonic functions $ w _ {1} , w _ {2} \dots $ | ||
+ | in $ \Omega $ | ||
+ | that are square summable in $ \Omega $ | ||
+ | together with their first derivatives. An approximate solution is sought in the form | ||
− | + | $$ | |
+ | u _ {n} = \ | ||
+ | \sum _ {j = 1 } ^ { n } c _ {j} w _ {j} , | ||
+ | $$ | ||
− | + | the coefficients $ c _ {j} $ | |
+ | being determined from the condition that $ J ( u _ {n} - u) $ | ||
+ | is minimal, where $ u $ | ||
+ | is the exact solution of (*). This leads to the following system of equations for $ c _ {1} \dots c _ {n} $: | ||
− | + | $$ | |
+ | \sum _ {j = 1 } ^ { n } c _ {j} \int\limits _ { S } w _ {j} | ||
+ | \frac{\partial w _ {i} }{\partial \nu } | ||
+ | \ | ||
+ | dS = \ | ||
+ | \int\limits _ { S } \phi | ||
− | + | \frac{\partial w _ {i} }{\partial \nu } | |
+ | dS,\ \ | ||
+ | i = 1 \dots n, | ||
+ | $$ | ||
− | where | + | where $ \nu $ |
+ | is the outward normal to $ S $. | ||
Trefftz' method can be generalized to various boundary value problems (see [[#References|[2]]]–[[#References|[4]]]). | Trefftz' method can be generalized to various boundary value problems (see [[#References|[2]]]–[[#References|[4]]]). | ||
Line 23: | Line 63: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Trefftz, "Ein Gegenstück zum Ritzschen Verfahren" , ''Verhandl. 2er Internat. Kongress. Techn. Mechanik Zürich, 1926, 12–17 Sept.'' , O. Füssli (1927) pp. 131–137</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.G. [S.G. Mikhlin] Michlin, "Variationsmethoden der mathematischen Physik" , Akademie Verlag (1962) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.I. Krylov, V.V. Bobkov, P.I. Monastyrnyi, "Computing methods of higher mathematics" , '''2''' , Minsk (1975) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.Sh. Birman, "Variational methods for solving boundary value problems analogous to Trefftz' method" ''Vestnik Leningrad. Gos. Univ. Ser. mat. Mekh. i Astr.'' , '''11''' : 13 (1956) pp. 69–89 (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Trefftz, "Ein Gegenstück zum Ritzschen Verfahren" , ''Verhandl. 2er Internat. Kongress. Techn. Mechanik Zürich, 1926, 12–17 Sept.'' , O. Füssli (1927) pp. 131–137</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.G. [S.G. Mikhlin] Michlin, "Variationsmethoden der mathematischen Physik" , Akademie Verlag (1962) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.I. Krylov, V.V. Bobkov, P.I. Monastyrnyi, "Computing methods of higher mathematics" , '''2''' , Minsk (1975) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.Sh. Birman, "Variational methods for solving boundary value problems analogous to Trefftz' method" ''Vestnik Leningrad. Gos. Univ. Ser. mat. Mekh. i Astr.'' , '''11''' : 13 (1956) pp. 69–89 (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Rektorys (ed.) , ''Applicable mathematics'' , Iliffe (1969) pp. 1056–1058</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Rektorys (ed.) , ''Applicable mathematics'' , Iliffe (1969) pp. 1056–1058</TD></TR></table> |
Latest revision as of 08:26, 6 June 2020
One of the variational methods for solving boundary value problems. Suppose one has to solve the boundary value problem
$$ \tag{* } \Delta u = 0,\ \ u \mid _ {S} = \phi , $$
where $ S $ is the boundary of a domain $ \Omega \subset \mathbf R ^ {m} $. The solution of the problem (*) minimizes the functional
$$ J ( u) = \int\limits _ \Omega ( \mathop{\rm grad} u ( x)) ^ {2} dx $$
over all functions satisfying the boundary condition $ u \mid _ {S} = \phi $. Trefftz' method consists in the following. Suppose one is given a sequence of harmonic functions $ w _ {1} , w _ {2} \dots $ in $ \Omega $ that are square summable in $ \Omega $ together with their first derivatives. An approximate solution is sought in the form
$$ u _ {n} = \ \sum _ {j = 1 } ^ { n } c _ {j} w _ {j} , $$
the coefficients $ c _ {j} $ being determined from the condition that $ J ( u _ {n} - u) $ is minimal, where $ u $ is the exact solution of (*). This leads to the following system of equations for $ c _ {1} \dots c _ {n} $:
$$ \sum _ {j = 1 } ^ { n } c _ {j} \int\limits _ { S } w _ {j} \frac{\partial w _ {i} }{\partial \nu } \ dS = \ \int\limits _ { S } \phi \frac{\partial w _ {i} }{\partial \nu } dS,\ \ i = 1 \dots n, $$
where $ \nu $ is the outward normal to $ S $.
Trefftz' method can be generalized to various boundary value problems (see [2]–[4]).
The method was proposed by E. Trefftz (see [1]).
References
[1] | E. Trefftz, "Ein Gegenstück zum Ritzschen Verfahren" , Verhandl. 2er Internat. Kongress. Techn. Mechanik Zürich, 1926, 12–17 Sept. , O. Füssli (1927) pp. 131–137 |
[2] | S.G. [S.G. Mikhlin] Michlin, "Variationsmethoden der mathematischen Physik" , Akademie Verlag (1962) (Translated from Russian) |
[3] | V.I. Krylov, V.V. Bobkov, P.I. Monastyrnyi, "Computing methods of higher mathematics" , 2 , Minsk (1975) (In Russian) |
[4] | M.Sh. Birman, "Variational methods for solving boundary value problems analogous to Trefftz' method" Vestnik Leningrad. Gos. Univ. Ser. mat. Mekh. i Astr. , 11 : 13 (1956) pp. 69–89 (In Russian) |
Comments
References
[a1] | K. Rektorys (ed.) , Applicable mathematics , Iliffe (1969) pp. 1056–1058 |
Trefftz method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Trefftz_method&oldid=49030