Namespaces
Variants
Actions

Difference between revisions of "Translations of semi-groups"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Transformations of semi-groups that satisfy special conditions: a right translation of a [[Semi-group|semi-group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938601.png" /> is a transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938602.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938603.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938604.png" />; a left translation is defined similarly. For convenience, left translations are often written as left operators. Thus, a left translation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938605.png" /> is a transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938606.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938607.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938608.png" />. The successive application of two left translations (see [[Transformation semi-group|Transformation semi-group]]) is written from right to left. The product of two left (respectively, right) translations of a semi-group is itself a left (respectively, right) translation, so that the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938609.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386010.png" />) of all left (respectively, right) translations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386011.png" /> is a sub-semi-group of the symmetric semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386012.png" />. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386013.png" /> the transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386014.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386015.png" />) defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386016.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386017.png" />) is the left (respectively, right) translation corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386018.png" />. It is called the inner left (respectively, right) translation. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386019.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386020.png" />) of all inner left (respectively, right) translations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386021.png" /> is a left ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386022.png" /> (respectively, a right ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386023.png" />).
+
<!--
 +
t0938601.png
 +
$#A+1 = 57 n = 0
 +
$#C+1 = 57 : ~/encyclopedia/old_files/data/T093/T.0903860 Translations of semi\AAhgroups
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A left translation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386024.png" /> and a right translation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386025.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386026.png" /> are called linked if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386027.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386028.png" />; in this case the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386029.png" /> is called a bi-translation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386030.png" />. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386031.png" />, the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386032.png" /> is a bi-translation, called the inner bi-translation corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386033.png" />. In semi-groups with a unit, and only in them, every bi-translation is inner. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386034.png" /> of all bi-translations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386035.png" /> is a sub-semi-group of the Cartesian product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386036.png" />; it is called the translational hull of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386037.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386038.png" /> of all inner bi-translations is an ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386039.png" />, called the inner part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386040.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386041.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386042.png" /> is a homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386043.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386044.png" />, called the canonical homomorphism. A semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386045.png" /> is called weakly reductive if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386046.png" /> the relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386048.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386049.png" /> imply that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386050.png" />, that is, the canonical homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386051.png" /> is an isomorphism. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386052.png" /> is weakly reductive, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386053.png" /> coincides with the idealizer of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386054.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386055.png" />, that is, with the largest sub-semi-group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386056.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386057.png" /> as an ideal.
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
Transformations of semi-groups that satisfy special conditions: a right translation of a [[Semi-group|semi-group]] 
 +
is a transformation    \rho
 +
such that    ( xy) \rho = x ( y \rho )
 +
for any    x, y \in S ;
 +
a left translation is defined similarly. For convenience, left translations are often written as left operators. Thus, a left translation of    S
 +
is a transformation    \lambda
 +
such that  $  \lambda ( xy) = ( \lambda x) y $
 +
for any    x, y \in S .  
 +
The successive application of two left translations (see [[Transformation semi-group|Transformation semi-group]]) is written from right to left. The product of two left (respectively, right) translations of a semi-group is itself a left (respectively, right) translation, so that the set    \Lambda ( S) (
 +
respectively,    \textrm{ P } ( S) )
 +
of all left (respectively, right) translations of    S
 +
is a sub-semi-group of the symmetric semi-group    {\mathcal T} _ {S} .  
 +
For any    a \in S
 +
the transformation    \lambda _ {a} (
 +
  \rho _ {a} )
 +
defined by  $  \lambda _ {a} x = ax $(
 +
respectively,  $  x \rho _ {a} = xa $)
 +
is the left (respectively, right) translation corresponding to    a .  
 +
It is called the inner left (respectively, right) translation. The set    \Lambda _ {0} ( S) (
 +
respectively,    \textrm{ P } _ {0} ( S) )
 +
of all inner left (respectively, right) translations of    S
 +
is a left ideal in    \Lambda ( S) (
 +
respectively, a right ideal in    \textrm{ P } ( S) ).
 +
 
 +
A left translation    \lambda
 +
and a right translation    \rho
 +
of    S
 +
are called linked if $  x ( \lambda y) = ( x \rho ) y $
 +
for any   x, y \in S ;  
 +
in this case the pair   ( \lambda , \rho )
 +
is called a bi-translation of   S .  
 +
For any   a \in S ,  
 +
the pair   ( \lambda _ {a} , \rho _ {a} )
 +
is a bi-translation, called the inner bi-translation corresponding to   a .  
 +
In semi-groups with a unit, and only in them, every bi-translation is inner. The set   T ( S)
 +
of all bi-translations of   S
 +
is a sub-semi-group of the Cartesian product   \Lambda ( S) \times \textrm{ P } ( S) ;  
 +
it is called the translational hull of   S .  
 +
The set $  T _ {0} ( S) $
 +
of all inner bi-translations is an ideal in   T ( S) ,  
 +
called the inner part of   T ( S) .  
 +
The mapping $  \tau :  S \rightarrow T _ {0} ( S) $
 +
defined by $  \tau ( a) = ( \lambda _ {a} , \rho _ {a} ) $
 +
is a homomorphism of   S
 +
onto $  T _ {0} ( S) $,  
 +
called the canonical homomorphism. A semi-group   S
 +
is called weakly reductive if for any   a, b \in S
 +
the relations $  ax = bx $
 +
and $  xa = xb $
 +
for all   x \in S
 +
imply that $  a = b $,  
 +
that is, the canonical homomorphism of   S
 +
is an isomorphism. If   S
 +
is weakly reductive, then   T ( S)
 +
coincides with the idealizer of $  T _ {0} ( S) $
 +
in   \Lambda ( S) \times \textrm{ P } ( S) ,  
 +
that is, with the largest sub-semi-group of   \Lambda ( S) \times \textrm{ P } ( S)
 +
containing $  T _ {0} ( S) $
 +
as an ideal.
  
 
Translations of semi-groups, and in particular, translational hulls, play an important role in the study of ideal extensions of semi-groups (cf. [[Extension of a semi-group|Extension of a semi-group]]). Here the role of the translational hull is to a certain extent similar to that of the [[Holomorph of a group|holomorph of a group]] in group theory.
 
Translations of semi-groups, and in particular, translational hulls, play an important role in the study of ideal extensions of semi-groups (cf. [[Extension of a semi-group|Extension of a semi-group]]). Here the role of the translational hull is to a certain extent similar to that of the [[Holomorph of a group|holomorph of a group]] in group theory.

Latest revision as of 08:26, 6 June 2020


Transformations of semi-groups that satisfy special conditions: a right translation of a semi-group S is a transformation \rho such that ( xy) \rho = x ( y \rho ) for any x, y \in S ; a left translation is defined similarly. For convenience, left translations are often written as left operators. Thus, a left translation of S is a transformation \lambda such that \lambda ( xy) = ( \lambda x) y for any x, y \in S . The successive application of two left translations (see Transformation semi-group) is written from right to left. The product of two left (respectively, right) translations of a semi-group is itself a left (respectively, right) translation, so that the set \Lambda ( S) ( respectively, \textrm{ P } ( S) ) of all left (respectively, right) translations of S is a sub-semi-group of the symmetric semi-group {\mathcal T} _ {S} . For any a \in S the transformation \lambda _ {a} ( \rho _ {a} ) defined by \lambda _ {a} x = ax ( respectively, x \rho _ {a} = xa ) is the left (respectively, right) translation corresponding to a . It is called the inner left (respectively, right) translation. The set \Lambda _ {0} ( S) ( respectively, \textrm{ P } _ {0} ( S) ) of all inner left (respectively, right) translations of S is a left ideal in \Lambda ( S) ( respectively, a right ideal in \textrm{ P } ( S) ).

A left translation \lambda and a right translation \rho of S are called linked if x ( \lambda y) = ( x \rho ) y for any x, y \in S ; in this case the pair ( \lambda , \rho ) is called a bi-translation of S . For any a \in S , the pair ( \lambda _ {a} , \rho _ {a} ) is a bi-translation, called the inner bi-translation corresponding to a . In semi-groups with a unit, and only in them, every bi-translation is inner. The set T ( S) of all bi-translations of S is a sub-semi-group of the Cartesian product \Lambda ( S) \times \textrm{ P } ( S) ; it is called the translational hull of S . The set T _ {0} ( S) of all inner bi-translations is an ideal in T ( S) , called the inner part of T ( S) . The mapping \tau : S \rightarrow T _ {0} ( S) defined by \tau ( a) = ( \lambda _ {a} , \rho _ {a} ) is a homomorphism of S onto T _ {0} ( S) , called the canonical homomorphism. A semi-group S is called weakly reductive if for any a, b \in S the relations ax = bx and xa = xb for all x \in S imply that a = b , that is, the canonical homomorphism of S is an isomorphism. If S is weakly reductive, then T ( S) coincides with the idealizer of T _ {0} ( S) in \Lambda ( S) \times \textrm{ P } ( S) , that is, with the largest sub-semi-group of \Lambda ( S) \times \textrm{ P } ( S) containing T _ {0} ( S) as an ideal.

Translations of semi-groups, and in particular, translational hulls, play an important role in the study of ideal extensions of semi-groups (cf. Extension of a semi-group). Here the role of the translational hull is to a certain extent similar to that of the holomorph of a group in group theory.

References

[1] A.H. Clifford, G.B. Preston, "The algebraic theory of semi-groups" , 1 , Amer. Math. Soc. (1967)
[2] M. Petrich, "Introduction to semigroups" , C.E. Merrill (1973)
[3] M. Petrich, "The translational hull in semigroups and rings" Semigroup Forum , 1 (1970) pp. 283–360
How to Cite This Entry:
Translations of semi-groups. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Translations_of_semi-groups&oldid=49018
This article was adapted from an original article by L.N. Shevrin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article