|
|
Line 1: |
Line 1: |
− | Transformations of semi-groups that satisfy special conditions: a right translation of a [[Semi-group|semi-group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938601.png" /> is a transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938602.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938603.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938604.png" />; a left translation is defined similarly. For convenience, left translations are often written as left operators. Thus, a left translation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938605.png" /> is a transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938606.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938607.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938608.png" />. The successive application of two left translations (see [[Transformation semi-group|Transformation semi-group]]) is written from right to left. The product of two left (respectively, right) translations of a semi-group is itself a left (respectively, right) translation, so that the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938609.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386010.png" />) of all left (respectively, right) translations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386011.png" /> is a sub-semi-group of the symmetric semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386012.png" />. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386013.png" /> the transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386014.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386015.png" />) defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386016.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386017.png" />) is the left (respectively, right) translation corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386018.png" />. It is called the inner left (respectively, right) translation. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386019.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386020.png" />) of all inner left (respectively, right) translations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386021.png" /> is a left ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386022.png" /> (respectively, a right ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386023.png" />).
| + | <!-- |
| + | t0938601.png |
| + | $#A+1 = 57 n = 0 |
| + | $#C+1 = 57 : ~/encyclopedia/old_files/data/T093/T.0903860 Translations of semi\AAhgroups |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A left translation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386024.png" /> and a right translation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386025.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386026.png" /> are called linked if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386027.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386028.png" />; in this case the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386029.png" /> is called a bi-translation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386030.png" />. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386031.png" />, the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386032.png" /> is a bi-translation, called the inner bi-translation corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386033.png" />. In semi-groups with a unit, and only in them, every bi-translation is inner. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386034.png" /> of all bi-translations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386035.png" /> is a sub-semi-group of the Cartesian product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386036.png" />; it is called the translational hull of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386037.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386038.png" /> of all inner bi-translations is an ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386039.png" />, called the inner part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386040.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386041.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386042.png" /> is a homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386043.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386044.png" />, called the canonical homomorphism. A semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386045.png" /> is called weakly reductive if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386046.png" /> the relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386048.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386049.png" /> imply that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386050.png" />, that is, the canonical homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386051.png" /> is an isomorphism. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386052.png" /> is weakly reductive, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386053.png" /> coincides with the idealizer of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386054.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386055.png" />, that is, with the largest sub-semi-group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386056.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386057.png" /> as an ideal.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| + | Transformations of semi-groups that satisfy special conditions: a right translation of a [[Semi-group|semi-group]] $ S $ |
| + | is a transformation $ \rho $ |
| + | such that $ ( xy) \rho = x ( y \rho ) $ |
| + | for any $ x, y \in S $; |
| + | a left translation is defined similarly. For convenience, left translations are often written as left operators. Thus, a left translation of $ S $ |
| + | is a transformation $ \lambda $ |
| + | such that $ \lambda ( xy) = ( \lambda x) y $ |
| + | for any $ x, y \in S $. |
| + | The successive application of two left translations (see [[Transformation semi-group|Transformation semi-group]]) is written from right to left. The product of two left (respectively, right) translations of a semi-group is itself a left (respectively, right) translation, so that the set $ \Lambda ( S) $( |
| + | respectively, $ \textrm{ P } ( S) $) |
| + | of all left (respectively, right) translations of $ S $ |
| + | is a sub-semi-group of the symmetric semi-group $ {\mathcal T} _ {S} $. |
| + | For any $ a \in S $ |
| + | the transformation $ \lambda _ {a} $( |
| + | $ \rho _ {a} $) |
| + | defined by $ \lambda _ {a} x = ax $( |
| + | respectively, $ x \rho _ {a} = xa $) |
| + | is the left (respectively, right) translation corresponding to $ a $. |
| + | It is called the inner left (respectively, right) translation. The set $ \Lambda _ {0} ( S) $( |
| + | respectively, $ \textrm{ P } _ {0} ( S) $) |
| + | of all inner left (respectively, right) translations of $ S $ |
| + | is a left ideal in $ \Lambda ( S) $( |
| + | respectively, a right ideal in $ \textrm{ P } ( S) $). |
| + | |
| + | A left translation $ \lambda $ |
| + | and a right translation $ \rho $ |
| + | of $ S $ |
| + | are called linked if $ x ( \lambda y) = ( x \rho ) y $ |
| + | for any $ x, y \in S $; |
| + | in this case the pair $ ( \lambda , \rho ) $ |
| + | is called a bi-translation of $ S $. |
| + | For any $ a \in S $, |
| + | the pair $ ( \lambda _ {a} , \rho _ {a} ) $ |
| + | is a bi-translation, called the inner bi-translation corresponding to $ a $. |
| + | In semi-groups with a unit, and only in them, every bi-translation is inner. The set $ T ( S) $ |
| + | of all bi-translations of $ S $ |
| + | is a sub-semi-group of the Cartesian product $ \Lambda ( S) \times \textrm{ P } ( S) $; |
| + | it is called the translational hull of $ S $. |
| + | The set $ T _ {0} ( S) $ |
| + | of all inner bi-translations is an ideal in $ T ( S) $, |
| + | called the inner part of $ T ( S) $. |
| + | The mapping $ \tau : S \rightarrow T _ {0} ( S) $ |
| + | defined by $ \tau ( a) = ( \lambda _ {a} , \rho _ {a} ) $ |
| + | is a homomorphism of $ S $ |
| + | onto $ T _ {0} ( S) $, |
| + | called the canonical homomorphism. A semi-group $ S $ |
| + | is called weakly reductive if for any $ a, b \in S $ |
| + | the relations $ ax = bx $ |
| + | and $ xa = xb $ |
| + | for all $ x \in S $ |
| + | imply that $ a = b $, |
| + | that is, the canonical homomorphism of $ S $ |
| + | is an isomorphism. If $ S $ |
| + | is weakly reductive, then $ T ( S) $ |
| + | coincides with the idealizer of $ T _ {0} ( S) $ |
| + | in $ \Lambda ( S) \times \textrm{ P } ( S) $, |
| + | that is, with the largest sub-semi-group of $ \Lambda ( S) \times \textrm{ P } ( S) $ |
| + | containing $ T _ {0} ( S) $ |
| + | as an ideal. |
| | | |
| Translations of semi-groups, and in particular, translational hulls, play an important role in the study of ideal extensions of semi-groups (cf. [[Extension of a semi-group|Extension of a semi-group]]). Here the role of the translational hull is to a certain extent similar to that of the [[Holomorph of a group|holomorph of a group]] in group theory. | | Translations of semi-groups, and in particular, translational hulls, play an important role in the study of ideal extensions of semi-groups (cf. [[Extension of a semi-group|Extension of a semi-group]]). Here the role of the translational hull is to a certain extent similar to that of the [[Holomorph of a group|holomorph of a group]] in group theory. |
Transformations of semi-groups that satisfy special conditions: a right translation of a semi-group $ S $
is a transformation $ \rho $
such that $ ( xy) \rho = x ( y \rho ) $
for any $ x, y \in S $;
a left translation is defined similarly. For convenience, left translations are often written as left operators. Thus, a left translation of $ S $
is a transformation $ \lambda $
such that $ \lambda ( xy) = ( \lambda x) y $
for any $ x, y \in S $.
The successive application of two left translations (see Transformation semi-group) is written from right to left. The product of two left (respectively, right) translations of a semi-group is itself a left (respectively, right) translation, so that the set $ \Lambda ( S) $(
respectively, $ \textrm{ P } ( S) $)
of all left (respectively, right) translations of $ S $
is a sub-semi-group of the symmetric semi-group $ {\mathcal T} _ {S} $.
For any $ a \in S $
the transformation $ \lambda _ {a} $(
$ \rho _ {a} $)
defined by $ \lambda _ {a} x = ax $(
respectively, $ x \rho _ {a} = xa $)
is the left (respectively, right) translation corresponding to $ a $.
It is called the inner left (respectively, right) translation. The set $ \Lambda _ {0} ( S) $(
respectively, $ \textrm{ P } _ {0} ( S) $)
of all inner left (respectively, right) translations of $ S $
is a left ideal in $ \Lambda ( S) $(
respectively, a right ideal in $ \textrm{ P } ( S) $).
A left translation $ \lambda $
and a right translation $ \rho $
of $ S $
are called linked if $ x ( \lambda y) = ( x \rho ) y $
for any $ x, y \in S $;
in this case the pair $ ( \lambda , \rho ) $
is called a bi-translation of $ S $.
For any $ a \in S $,
the pair $ ( \lambda _ {a} , \rho _ {a} ) $
is a bi-translation, called the inner bi-translation corresponding to $ a $.
In semi-groups with a unit, and only in them, every bi-translation is inner. The set $ T ( S) $
of all bi-translations of $ S $
is a sub-semi-group of the Cartesian product $ \Lambda ( S) \times \textrm{ P } ( S) $;
it is called the translational hull of $ S $.
The set $ T _ {0} ( S) $
of all inner bi-translations is an ideal in $ T ( S) $,
called the inner part of $ T ( S) $.
The mapping $ \tau : S \rightarrow T _ {0} ( S) $
defined by $ \tau ( a) = ( \lambda _ {a} , \rho _ {a} ) $
is a homomorphism of $ S $
onto $ T _ {0} ( S) $,
called the canonical homomorphism. A semi-group $ S $
is called weakly reductive if for any $ a, b \in S $
the relations $ ax = bx $
and $ xa = xb $
for all $ x \in S $
imply that $ a = b $,
that is, the canonical homomorphism of $ S $
is an isomorphism. If $ S $
is weakly reductive, then $ T ( S) $
coincides with the idealizer of $ T _ {0} ( S) $
in $ \Lambda ( S) \times \textrm{ P } ( S) $,
that is, with the largest sub-semi-group of $ \Lambda ( S) \times \textrm{ P } ( S) $
containing $ T _ {0} ( S) $
as an ideal.
Translations of semi-groups, and in particular, translational hulls, play an important role in the study of ideal extensions of semi-groups (cf. Extension of a semi-group). Here the role of the translational hull is to a certain extent similar to that of the holomorph of a group in group theory.
References
[1] | A.H. Clifford, G.B. Preston, "The algebraic theory of semi-groups" , 1 , Amer. Math. Soc. (1967) |
[2] | M. Petrich, "Introduction to semigroups" , C.E. Merrill (1973) |
[3] | M. Petrich, "The translational hull in semigroups and rings" Semigroup Forum , 1 (1970) pp. 283–360 |