Difference between revisions of "Transition function"
(refs format) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | t0937601.png | ||
| + | $#A+1 = 79 n = 0 | ||
| + | $#C+1 = 79 : ~/encyclopedia/old_files/data/T093/T.0903760 Transition function, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''transition probability'' | ''transition probability'' | ||
| Line 5: | Line 17: | ||
[[Category:Markov processes]] | [[Category:Markov processes]] | ||
| − | A family of measures used in the theory of Markov processes for determining the distribution at future instants from known states at previous times. Let a measurable space | + | A family of measures used in the theory of Markov processes for determining the distribution at future instants from known states at previous times. Let a measurable space $ ( E, {\mathcal B}) $ |
| + | be such that the $ \sigma $- | ||
| + | algebra $ {\mathcal B} $ | ||
| + | contains all one-point subsets from $ E $, | ||
| + | and let $ T $ | ||
| + | be a subset of the real line $ \mathbf R $. | ||
| + | A function $ P( s, x; t, B) $ | ||
| + | given for $ s, t \in T $, | ||
| + | $ s \leq t $, | ||
| + | $ x \in E $ | ||
| + | and $ B \in {\mathcal B} $ | ||
| + | is called a transition function for $ ( E, {\mathcal B}) $ | ||
| + | if: a) for given $ s $, | ||
| + | $ x $ | ||
| + | and $ t $, | ||
| + | it is a measure on $ {\mathcal B} $, | ||
| + | with $ P( s, x; t, B) \leq 1 $; | ||
| + | b) for given $ s $, | ||
| + | $ t $ | ||
| + | and $ B $, | ||
| + | it is a $ {\mathcal B} $- | ||
| + | measurable function of the point $ x $; | ||
| + | c) $ P( s, x; s, \{ x \} ) \equiv 1 $ | ||
| + | and for all limit points $ s $ | ||
| + | of $ T $ | ||
| + | from the right in the topology of $ \mathbf R $, | ||
| − | + | $$ | |
| + | \lim\limits _ {\begin{array}{c} | ||
| + | t\downarrow s \\ | ||
| + | t \in T | ||
| + | \end{array} | ||
| + | } P( s, x; t, E) = 1; | ||
| + | $$ | ||
| − | and d) for all | + | and d) for all $ x \in E $, |
| + | $ B \in {\mathcal B} $ | ||
| + | and $ s \leq t \leq u $ | ||
| + | from $ T $, | ||
| + | the Kolmogorov–Chapman equation is fulfilled: | ||
| − | + | $$ \tag{* } | |
| + | P( s, x; u , B) = \int\limits _ { E } P( s, x; t, dy) P( t, y; u , B) | ||
| + | $$ | ||
| − | (in some cases, requirement c) may be omitted or weakened). A transition function is called a Markov transition function if | + | (in some cases, requirement c) may be omitted or weakened). A transition function is called a Markov transition function if $ P( s, x; t, E) \equiv 1 $, |
| + | and a subMarkov transition function otherwise. If $ E $ | ||
| + | is at most countable, then the transition function is specified by means of the matrix of transition probabilities | ||
| − | + | $$ | |
| + | P ^ {st} = \| P _ {xy} ( s, t) \| | ||
| + | $$ | ||
| − | (see [[Transition probabilities|Transition probabilities]]; [[Matrix of transition probabilities|Matrix of transition probabilities]]). It often happens that for any admissible | + | (see [[Transition probabilities|Transition probabilities]]; [[Matrix of transition probabilities|Matrix of transition probabilities]]). It often happens that for any admissible $ s $, |
| + | $ x $ | ||
| + | and $ t $ | ||
| + | the measure $ P( s, x; t, \cdot ) $ | ||
| + | has a density $ p( s, x; t, \cdot ) $ | ||
| + | with respect to a certain measure. If in this case the following form of equation (*) is satisfied: | ||
| − | + | $$ | |
| + | p( s, x; u , z) = \int\limits _ { E } p( s, x; t, y) p( t, y; u , z) dy | ||
| + | $$ | ||
| − | for any | + | for any $ x $ |
| + | and $ z $ | ||
| + | from $ E $ | ||
| + | and $ s \leq t \leq u $ | ||
| + | from $ T $, | ||
| + | then $ p( s, x; t, y) $ | ||
| + | is called a transition density. | ||
| − | Under very general conditions (cf. {{Cite|N}}, {{Cite|GS}}), the transition function | + | Under very general conditions (cf. {{Cite|N}}, {{Cite|GS}}), the transition function $ P( s, x; t, B) $ |
| + | can be related to a Markov process $ X = ( x _ {t} , \zeta , {\mathcal F} _ {t} ^ {s} , {\mathsf P} _ {s,x} ) $ | ||
| + | for which $ {\mathsf P} _ {s,x} \{ x _ {t} \in B \} = P( s, x; t, B) $( | ||
| + | in the case of a Markov transition function, this process does not terminate, i.e. $ \zeta = \infty $ | ||
| + | $ P _ {s,x} $- | ||
| + | a.s.). On the other hand, the Markov property for a random process enables one, as a rule, to put the process into correspondence with a transition function {{Cite|K}}. | ||
| − | Let | + | Let $ T $ |
| + | be homogeneous in the sense that the set of values of $ t- s $ | ||
| + | for $ s \leq t $ | ||
| + | from $ T $ | ||
| + | forms a semi-group $ \widetilde{T} $ | ||
| + | in $ \mathbf R $ | ||
| + | under addition (for example, $ T = \mathbf R $, | ||
| + | $ T = \{ {t \in \mathbf R } : {t \geq 0 } \} $, | ||
| + | $ T = \{ 0, 1 ,\dots \} $). | ||
| + | If, moreover, the transition function $ P( s, x; t, B) $ | ||
| + | depends only on the difference $ t- s $, | ||
| + | i.e. if $ P( s, x; t, B) = P( t- s, x, B) $, | ||
| + | where $ P( t, x, B) $ | ||
| + | is a function of $ t \in \widetilde{T} $, | ||
| + | $ x \in E $, | ||
| + | $ B \in {\mathcal B} $ | ||
| + | satisfying the corresponding form of conditions a)–d), then $ P( s, x; t, B) $ | ||
| + | is called a homogeneous transition function. The latter name is also given to a function $ P( t, x, B) $ | ||
| + | for which (*) takes the form | ||
| − | + | $$ | |
| + | P( t+ s, x, B) = \int\limits _ { E } P( t, x, dy) P( s, y, B), | ||
| + | $$ | ||
| − | + | $$ | |
| + | s, t \in \widetilde{T} ,\ x \in E ,\ B \in {\mathcal B} . | ||
| + | $$ | ||
| − | For certain purposes (such as regularizing transition functions) it is necessary to extend the definition. For example, one takes as given a family of measurable spaces | + | For certain purposes (such as regularizing transition functions) it is necessary to extend the definition. For example, one takes as given a family of measurable spaces $ ( E _ {t} , {\mathcal B} _ {t} ) $, |
| + | $ t \in T $, | ||
| + | while a transition function with respect to this family is defined as a function $ P( s, x; t, B) $, | ||
| + | where $ s, t \in T $, | ||
| + | $ s \leq t $, | ||
| + | $ x \in E _ {s} $, | ||
| + | $ B \in {\mathcal B} _ {t} $, | ||
| + | that satisfies a suitable modification of conditions a)–d). | ||
====References==== | ====References==== | ||
Latest revision as of 08:26, 6 June 2020
transition probability
2020 Mathematics Subject Classification: Primary: 60J35 [MSN][ZBL]
A family of measures used in the theory of Markov processes for determining the distribution at future instants from known states at previous times. Let a measurable space $ ( E, {\mathcal B}) $ be such that the $ \sigma $- algebra $ {\mathcal B} $ contains all one-point subsets from $ E $, and let $ T $ be a subset of the real line $ \mathbf R $. A function $ P( s, x; t, B) $ given for $ s, t \in T $, $ s \leq t $, $ x \in E $ and $ B \in {\mathcal B} $ is called a transition function for $ ( E, {\mathcal B}) $ if: a) for given $ s $, $ x $ and $ t $, it is a measure on $ {\mathcal B} $, with $ P( s, x; t, B) \leq 1 $; b) for given $ s $, $ t $ and $ B $, it is a $ {\mathcal B} $- measurable function of the point $ x $; c) $ P( s, x; s, \{ x \} ) \equiv 1 $ and for all limit points $ s $ of $ T $ from the right in the topology of $ \mathbf R $,
$$ \lim\limits _ {\begin{array}{c} t\downarrow s \\ t \in T \end{array} } P( s, x; t, E) = 1; $$
and d) for all $ x \in E $, $ B \in {\mathcal B} $ and $ s \leq t \leq u $ from $ T $, the Kolmogorov–Chapman equation is fulfilled:
$$ \tag{* } P( s, x; u , B) = \int\limits _ { E } P( s, x; t, dy) P( t, y; u , B) $$
(in some cases, requirement c) may be omitted or weakened). A transition function is called a Markov transition function if $ P( s, x; t, E) \equiv 1 $, and a subMarkov transition function otherwise. If $ E $ is at most countable, then the transition function is specified by means of the matrix of transition probabilities
$$ P ^ {st} = \| P _ {xy} ( s, t) \| $$
(see Transition probabilities; Matrix of transition probabilities). It often happens that for any admissible $ s $, $ x $ and $ t $ the measure $ P( s, x; t, \cdot ) $ has a density $ p( s, x; t, \cdot ) $ with respect to a certain measure. If in this case the following form of equation (*) is satisfied:
$$ p( s, x; u , z) = \int\limits _ { E } p( s, x; t, y) p( t, y; u , z) dy $$
for any $ x $ and $ z $ from $ E $ and $ s \leq t \leq u $ from $ T $, then $ p( s, x; t, y) $ is called a transition density.
Under very general conditions (cf. [N], [GS]), the transition function $ P( s, x; t, B) $ can be related to a Markov process $ X = ( x _ {t} , \zeta , {\mathcal F} _ {t} ^ {s} , {\mathsf P} _ {s,x} ) $ for which $ {\mathsf P} _ {s,x} \{ x _ {t} \in B \} = P( s, x; t, B) $( in the case of a Markov transition function, this process does not terminate, i.e. $ \zeta = \infty $ $ P _ {s,x} $- a.s.). On the other hand, the Markov property for a random process enables one, as a rule, to put the process into correspondence with a transition function [K].
Let $ T $ be homogeneous in the sense that the set of values of $ t- s $ for $ s \leq t $ from $ T $ forms a semi-group $ \widetilde{T} $ in $ \mathbf R $ under addition (for example, $ T = \mathbf R $, $ T = \{ {t \in \mathbf R } : {t \geq 0 } \} $, $ T = \{ 0, 1 ,\dots \} $). If, moreover, the transition function $ P( s, x; t, B) $ depends only on the difference $ t- s $, i.e. if $ P( s, x; t, B) = P( t- s, x, B) $, where $ P( t, x, B) $ is a function of $ t \in \widetilde{T} $, $ x \in E $, $ B \in {\mathcal B} $ satisfying the corresponding form of conditions a)–d), then $ P( s, x; t, B) $ is called a homogeneous transition function. The latter name is also given to a function $ P( t, x, B) $ for which (*) takes the form
$$ P( t+ s, x, B) = \int\limits _ { E } P( t, x, dy) P( s, y, B), $$
$$ s, t \in \widetilde{T} ,\ x \in E ,\ B \in {\mathcal B} . $$
For certain purposes (such as regularizing transition functions) it is necessary to extend the definition. For example, one takes as given a family of measurable spaces $ ( E _ {t} , {\mathcal B} _ {t} ) $, $ t \in T $, while a transition function with respect to this family is defined as a function $ P( s, x; t, B) $, where $ s, t \in T $, $ s \leq t $, $ x \in E _ {s} $, $ B \in {\mathcal B} _ {t} $, that satisfies a suitable modification of conditions a)–d).
References
| [N] | J. Neveu, "Bases mathématiques du calcul des probabilités" , Masson (1970) MR0272004 Zbl 0203.49901 |
| [GS] | I.I. Gihman, A.V. Skorohod, "The theory of stochastic processes" , 2 , Springer (1975) (Translated from Russian) MR0375463 Zbl 0305.60027 |
| [K] | S.E. Kuznetsov, "Any Markov process in a Borel space has a transition function" Theory Probab. Appl. , 25 : 2 (1980) pp. 384–388 Teor. Veroyatnost. i ee Primenen. , 25 : 2 (1980) pp. 389–393 MR0572574 Zbl 0456.60077 Zbl 0431.60071 |
Comments
For additional references see also Markov chain; Markov process.
References
| [DM] | C. Dellacherie, P.A. Meyer, "Probabilities and potential" , 1–3 , North-Holland (1978–1988) pp. Chapts. XII-XVI (Translated from French) MR0939365 MR0898005 MR0727641 MR0745449 MR0566768 MR0521810 Zbl 0716.60001 Zbl 0494.60002 Zbl 0494.60001 |
| [S] | M.J. Sharpe, "General theory of Markov processes" , Acad. Press (1988) MR0958914 Zbl 0649.60079 |
| [AM] | S. Albeverio, Z.M. Ma, "A note on quasicontinuous kernels representing quasilinear positive maps" Forum Math. , 3 (1991) pp. 389–400 |
Transition function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transition_function&oldid=49013