Namespaces
Variants
Actions

Difference between revisions of "Transition-operator semi-group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(refs format)
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
t0937701.png
 +
$#A+1 = 67 n = 0
 +
$#C+1 = 67 : ~/encyclopedia/old_files/data/T093/T.0903770 Transition\AAhoperator semi\AAhgroup
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
{{MSC|60J35|47D07}}
 
{{MSC|60J35|47D07}}
  
 
[[Category:Markov processes]]
 
[[Category:Markov processes]]
  
The [[Semi-group of operators|semi-group of operators]] generated by the [[Transition function|transition function]] of a [[Markov process|Markov process]]. From the transition function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937701.png" /> of a homogeneous Markov process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937702.png" /> in a state space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937703.png" /> one can construct certain semi-groups of linear operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937704.png" /> acting in some Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937705.png" /> {{Cite|F}}. Very often, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937706.png" /> is the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937707.png" /> of bounded real-valued measurable functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937708.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937709.png" /> with the uniform norm (or for a [[Feller process|Feller process]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377010.png" />, the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377011.png" /> of continuous functions with the same norm) or else the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377012.png" /> of finite countably-additive functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377013.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377014.png" /> with the complete variation as norm. In the first two cases one puts
+
The [[Semi-group of operators|semi-group of operators]] generated by the [[Transition function|transition function]] of a [[Markov process|Markov process]]. From the transition function $  P( t, x, A) $
 +
of a homogeneous Markov process $  X = ( x _ {t} , \zeta , {\mathcal F} _ {t} , {\mathsf P} _ {x} ) $
 +
in a state space $  ( E, {\mathcal B}) $
 +
one can construct certain semi-groups of linear operators $  P  ^ {t} $
 +
acting in some Banach space $  B ${{
 +
Cite|F}}. Very often, $  B $
 +
is the space $  B ( E) $
 +
of bounded real-valued measurable functions $  f $
 +
in $  E $
 +
with the uniform norm (or for a [[Feller process|Feller process]] $  X $,  
 +
the space $  C ( E) $
 +
of continuous functions with the same norm) or else the space $  V( E) $
 +
of finite countably-additive functions $  \phi $
 +
on $  {\mathcal B} $
 +
with the complete variation as norm. In the first two cases one puts
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377015.png" /></td> </tr></table>
+
$$
 +
P  ^ {t} f( x)  = \int\limits _ { E } f( y)  {\mathsf P} ( t, x, dy);
 +
$$
  
 
and in the third
 
and in the third
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377016.png" /></td> </tr></table>
+
$$
 +
P  ^ {t} \phi ( A)  = \int\limits _ { E } {\mathsf P} ( t, y, A) \phi ( dy)
 +
$$
  
(here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377018.png" /> belong to the corresponding spaces, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377020.png" />). In all these cases the semi-group property holds: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377022.png" />, and any of the three semi-groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377023.png" /> is called a transition-operator semi-group.
+
(here $  f $
 +
and $  \phi $
 +
belong to the corresponding spaces, $  x \in E $,  
 +
$  A \in {\mathcal B} $).  
 +
In all these cases the semi-group property holds: $  P  ^ {t} P  ^ {s} = P  ^ {t+} s $,
 +
$  s, t \geq  0 $,  
 +
and any of the three semi-groups $  \{ P  ^ {t} \} $
 +
is called a transition-operator semi-group.
  
In what follows, only the first case is considered. The usual definition of the infinitesimal generator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377024.png" /> of the semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377025.png" /> (this is also the infinitesimal generator of the process) is as follows:
+
In what follows, only the first case is considered. The usual definition of the infinitesimal generator $  A $
 +
of the semi-group $  \{ P  ^ {t} \} $(
 +
this is also the infinitesimal generator of the process) is as follows:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377026.png" /></td> </tr></table>
+
$$
 +
Af  = \lim\limits _ {t \downarrow 0
 +
\frac{1}{t}
 +
( P  ^ {t} f - f  )
 +
$$
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377027.png" /> for which this limit exists as a limit in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377028.png" />. It is assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377029.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377030.png" /> is a measurable function of the pair of variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377031.png" />, and one introduces the resolvent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377032.png" /> of the process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377034.png" />, by:
+
for all $  f \in B ( E) $
 +
for which this limit exists as a limit in $  B ( E) $.  
 +
It is assumed that $  P( t, x, A) $
 +
for $  A \in {\mathcal B} $
 +
is a measurable function of the pair of variables $  ( t, x) $,
 +
and one introduces the resolvent $  R  ^  \alpha  $
 +
of the process $  X $,
 +
$  \alpha > 0 $,  
 +
by:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377035.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
R  ^  \alpha  f  = \int\limits _ { 0 } ^  \infty  e ^ {- \alpha t } P  ^ {t} f  dt ,\ \
 +
f \in B ( E).
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377036.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377037.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377038.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377039.png" />. Under certain assumptions the integral (*) exists also for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377040.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377041.png" /> satisfies the "Poisson equation"  
+
If $  \| P  ^ {t} f- f \| \rightarrow 0 $
 +
as  $  t \downarrow 0 $,  
 +
then $  Ag = \alpha g - f $,  
 +
where $  g = R  ^  \alpha  f $.  
 +
Under certain assumptions the integral (*) exists also for $  \alpha = 0 $,  
 +
and $  g = R  ^ {0} f $
 +
satisfies the "Poisson equation"  
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377042.png" /></td> </tr></table>
+
$$
 +
Ag  = - f
 +
$$
  
(for this reason, in particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377043.png" /> is called the potential of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377044.png" />).
+
(for this reason, in particular, $  R  ^ {0} f $
 +
is called the potential of $  f  $).
  
 
Knowledge of the infinitesimal generator enables one to derive important characteristics of the initial process; the classification of Markov processes amounts to the description of their corresponding infinitesimal generators {{Cite|Dy}}, {{Cite|GS}}. Also, using the infinitesimal generator one can find the mean values of various functionals. For example, under certain assumptions the function
 
Knowledge of the infinitesimal generator enables one to derive important characteristics of the initial process; the classification of Markov processes amounts to the description of their corresponding infinitesimal generators {{Cite|Dy}}, {{Cite|GS}}. Also, using the infinitesimal generator one can find the mean values of various functionals. For example, under certain assumptions the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377045.png" /></td> </tr></table>
+
$$
 +
v( t, x)  = {\mathsf E} _ {x} \left [  \mathop{\rm exp} \left \{ \int\limits _ { 0 } ^ { {t }  \wedge \zeta } c( x _ {s} )  ds \right \} f( x _ {t \wedge \zeta }  ) \right ] ,\ \
 +
t \geq  0,\  x \in E,
 +
$$
  
is a unique solution to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377047.png" />, which is a not-too-rapidly-increasing function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377048.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377049.png" /> is the mathematical expectation corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377050.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377051.png" />.
+
is a unique solution to $  v _ {t}  ^  \prime  = Av + cv $,
 +
$  v( 0, x) = f( x) $,  
 +
which is a not-too-rapidly-increasing function of t $.  
 +
Here $  {\mathsf E} _ {x} $
 +
is the mathematical expectation corresponding to $  {\mathsf P} _ {x} $,  
 +
while $  t \wedge \zeta = \min ( t, \zeta ) $.
  
The operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377052.png" /> is related to the characteristic operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377053.png" /> {{Cite|Dy}}. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377054.png" /> be a Markov process that is right continuous in a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377055.png" />. For a Borel function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377056.png" /> one puts
+
The operator $  A $
 +
is related to the characteristic operator $  \mathfrak A ${{
 +
Cite|Dy}}. Let $  X $
 +
be a Markov process that is right continuous in a topological space $  E $.  
 +
For a Borel function $  f $
 +
one puts
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377057.png" /></td> </tr></table>
+
$$
 +
\mathfrak A f( x)  = \lim\limits _ {U \downarrow x }  \left [
 +
\frac{ {\mathsf E} _ {x} f( x _  \tau  ) -
 +
f( x) }{ {\mathsf E} _ {x} \tau }
 +
\right ] ,
 +
$$
  
if the limit exists for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377058.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377059.png" /> runs through a system of neighbourhoods of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377060.png" /> contracting towards <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377061.png" /> and where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377062.png" /> is the moment of first exit of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377063.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377064.png" /> (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377065.png" />, the fraction in the limit is set equal to zero). In many cases the calculation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377066.png" /> amounts to calculating <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377067.png" />.
+
if the limit exists for all $  x \in E $,  
 +
where $  U $
 +
runs through a system of neighbourhoods of the point $  x $
 +
contracting towards $  x $
 +
and where $  \tau $
 +
is the moment of first exit of $  X $
 +
from $  U $(
 +
if $  {\mathsf E} _ {x} \tau = \infty $,  
 +
the fraction in the limit is set equal to zero). In many cases the calculation of $  Af $
 +
amounts to calculating $  \mathfrak A f $.
  
 
====References====
 
====References====
Line 49: Line 139:
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====

Latest revision as of 08:26, 6 June 2020


2020 Mathematics Subject Classification: Primary: 60J35 Secondary: 47D07 [MSN][ZBL]

The semi-group of operators generated by the transition function of a Markov process. From the transition function $ P( t, x, A) $ of a homogeneous Markov process $ X = ( x _ {t} , \zeta , {\mathcal F} _ {t} , {\mathsf P} _ {x} ) $ in a state space $ ( E, {\mathcal B}) $ one can construct certain semi-groups of linear operators $ P ^ {t} $ acting in some Banach space $ B $[F]. Very often, $ B $ is the space $ B ( E) $ of bounded real-valued measurable functions $ f $ in $ E $ with the uniform norm (or for a Feller process $ X $, the space $ C ( E) $ of continuous functions with the same norm) or else the space $ V( E) $ of finite countably-additive functions $ \phi $ on $ {\mathcal B} $ with the complete variation as norm. In the first two cases one puts

$$ P ^ {t} f( x) = \int\limits _ { E } f( y) {\mathsf P} ( t, x, dy); $$

and in the third

$$ P ^ {t} \phi ( A) = \int\limits _ { E } {\mathsf P} ( t, y, A) \phi ( dy) $$

(here $ f $ and $ \phi $ belong to the corresponding spaces, $ x \in E $, $ A \in {\mathcal B} $). In all these cases the semi-group property holds: $ P ^ {t} P ^ {s} = P ^ {t+} s $, $ s, t \geq 0 $, and any of the three semi-groups $ \{ P ^ {t} \} $ is called a transition-operator semi-group.

In what follows, only the first case is considered. The usual definition of the infinitesimal generator $ A $ of the semi-group $ \{ P ^ {t} \} $( this is also the infinitesimal generator of the process) is as follows:

$$ Af = \lim\limits _ {t \downarrow 0 } \frac{1}{t} ( P ^ {t} f - f ) $$

for all $ f \in B ( E) $ for which this limit exists as a limit in $ B ( E) $. It is assumed that $ P( t, x, A) $ for $ A \in {\mathcal B} $ is a measurable function of the pair of variables $ ( t, x) $, and one introduces the resolvent $ R ^ \alpha $ of the process $ X $, $ \alpha > 0 $, by:

$$ \tag{* } R ^ \alpha f = \int\limits _ { 0 } ^ \infty e ^ {- \alpha t } P ^ {t} f dt ,\ \ f \in B ( E). $$

If $ \| P ^ {t} f- f \| \rightarrow 0 $ as $ t \downarrow 0 $, then $ Ag = \alpha g - f $, where $ g = R ^ \alpha f $. Under certain assumptions the integral (*) exists also for $ \alpha = 0 $, and $ g = R ^ {0} f $ satisfies the "Poisson equation"

$$ Ag = - f $$

(for this reason, in particular, $ R ^ {0} f $ is called the potential of $ f $).

Knowledge of the infinitesimal generator enables one to derive important characteristics of the initial process; the classification of Markov processes amounts to the description of their corresponding infinitesimal generators [Dy], [GS]. Also, using the infinitesimal generator one can find the mean values of various functionals. For example, under certain assumptions the function

$$ v( t, x) = {\mathsf E} _ {x} \left [ \mathop{\rm exp} \left \{ \int\limits _ { 0 } ^ { {t } \wedge \zeta } c( x _ {s} ) ds \right \} f( x _ {t \wedge \zeta } ) \right ] ,\ \ t \geq 0,\ x \in E, $$

is a unique solution to $ v _ {t} ^ \prime = Av + cv $, $ v( 0, x) = f( x) $, which is a not-too-rapidly-increasing function of $ t $. Here $ {\mathsf E} _ {x} $ is the mathematical expectation corresponding to $ {\mathsf P} _ {x} $, while $ t \wedge \zeta = \min ( t, \zeta ) $.

The operator $ A $ is related to the characteristic operator $ \mathfrak A $[Dy]. Let $ X $ be a Markov process that is right continuous in a topological space $ E $. For a Borel function $ f $ one puts

$$ \mathfrak A f( x) = \lim\limits _ {U \downarrow x } \left [ \frac{ {\mathsf E} _ {x} f( x _ \tau ) - f( x) }{ {\mathsf E} _ {x} \tau } \right ] , $$

if the limit exists for all $ x \in E $, where $ U $ runs through a system of neighbourhoods of the point $ x $ contracting towards $ x $ and where $ \tau $ is the moment of first exit of $ X $ from $ U $( if $ {\mathsf E} _ {x} \tau = \infty $, the fraction in the limit is set equal to zero). In many cases the calculation of $ Af $ amounts to calculating $ \mathfrak A f $.

References

[F] W. Feller, "The parabolic differential equations and the associated semi-groups of transformations" Ann. of Math. , 55 (1952) pp. 468–519 MR0047886
[Dy] E.B. Dynkin, "Foundations of the theory of Markov processes" , Springer (1961) (Translated from Russian) MR0131898
[GS] I.I. Gihman, A.V. Skorohod, "The theory of stochastic processes" , 2 , Springer (1975) (Translated from Russian) MR0375463 Zbl 0305.60027

Comments

References

[BG] R.M. Blumenthal, R.K. Getoor, "Markov processes and potential theory" , Acad. Press (1968) MR0264757 Zbl 0169.49204
[Do] J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984) pp. 390 MR0731258 Zbl 0549.31001
[Dy2] E.B. Dynkin, "Markov processes" , 1 , Springer (1965) (Translated from Russian) MR0193671 Zbl 0132.37901
[F2] W. Feller, "An introduction to probability theory and its applications" , 1–2 , Wiley (1966) MR0210154 Zbl 0138.10207
[L] M. Loève, "Probability theory" , II , Springer (1978) MR0651017 MR0651018 Zbl 0385.60001
[DM] C. Dellacherie, P.A. Meyer, "Probabilities and potential" , 1–3 , North-Holland (1978–1988) pp. Chapts. XII-XVI (Translated from French) MR0939365 MR0898005 MR0727641 MR0745449 MR0566768 MR0521810 Zbl 0716.60001 Zbl 0494.60002 Zbl 0494.60001
[S] M.J. Sharpe, "General theory of Markov processes" , Acad. Press (1988) MR0958914 Zbl 0649.60079
[AM] S. Albeverio, Zh.M. Ma, "A note on quasicontinuous kernels representing quasilinear positive maps" Forum Math. , 3 (1991) pp. 389–400
How to Cite This Entry:
Transition-operator semi-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transition-operator_semi-group&oldid=49012
This article was adapted from an original article by M.G. Shur (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article