Difference between revisions of "Tractrix"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | t0935701.png | ||
+ | $#A+1 = 12 n = 0 | ||
+ | $#C+1 = 12 : ~/encyclopedia/old_files/data/T093/T.0903570 Tractrix | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A plane transcendental curve whose equation in rectangular Cartesian coordinates has the form | A plane transcendental curve whose equation in rectangular Cartesian coordinates has the form | ||
− | + | $$ | |
+ | x = \pm a \mathop{\rm ln} \ | ||
+ | |||
+ | \frac{a + \sqrt {a ^ {2} - y ^ {2} } }{y } | ||
+ | \mps | ||
+ | \sqrt {a ^ {2} - y ^ {2} } . | ||
+ | $$ | ||
− | The tractrix is symmetric about the origin (see Fig.), the | + | The tractrix is symmetric about the origin (see Fig.), the $ x $- |
+ | axis being an asymptote. The point $ ( 0, a) $ | ||
+ | is a [[Cusp(2)|cusp]] with vertical tangent. The length of the arc measured from the point $ x = 0 $ | ||
+ | is: | ||
− | + | $$ | |
+ | l = a \mathop{\rm ln} { | ||
+ | \frac{a}{y} | ||
+ | } . | ||
+ | $$ | ||
The radius of curvature is: | The radius of curvature is: | ||
− | + | $$ | |
+ | r = a \mathop{\rm cot} { | ||
+ | \frac{x}{y} | ||
+ | } . | ||
+ | $$ | ||
The area bounded by the tractrix and its asymptote is: | The area bounded by the tractrix and its asymptote is: | ||
− | + | $$ | |
+ | S = { | ||
+ | \frac{\pi a ^ {2} }{2} | ||
+ | } . | ||
+ | $$ | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/t093570a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/t093570a.gif" /> | ||
Line 19: | Line 52: | ||
Figure: t093570a | Figure: t093570a | ||
− | The rotation of the tractrix around the | + | The rotation of the tractrix around the $ x $- |
+ | axis generates a [[Pseudo-sphere|pseudo-sphere]]. The length of the tangent, that is, of the segment between the point of tangency $ M $ | ||
+ | and the $ x $- | ||
+ | axis, is constant. This property enables one to regard the tractrix as the trajectory of the end of a line segment of length $ a $, | ||
+ | when the other end moves along the $ x $- | ||
+ | axis. The notion of a tractrix generalizes to the case when the end of the segment does not move along a straight line, but along some given curve; the curve obtained in this way is called the trajectory of the given curve. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Berger, B. Gostiaux, "Differential geometry: manifolds, curves, and surfaces" , Springer (1988) (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> F. Gomes Teixeira, "Traité des courbes" , '''1–3''' , Chelsea, reprint (1971)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Greenberg, "Euclidean and non-Euclidean geometries" , Freeman (1974)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Spivak, "A comprehensive introduction to differential geometry" , '''1979''' , Publish or Perish pp. 1–5</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> K. Fladt, "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell. (1962)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> J.D. Lawrence, "A catalog of special plane curves" , Dover, reprint (1972)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Berger, B. Gostiaux, "Differential geometry: manifolds, curves, and surfaces" , Springer (1988) (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> F. Gomes Teixeira, "Traité des courbes" , '''1–3''' , Chelsea, reprint (1971)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Greenberg, "Euclidean and non-Euclidean geometries" , Freeman (1974)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Spivak, "A comprehensive introduction to differential geometry" , '''1979''' , Publish or Perish pp. 1–5</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> K. Fladt, "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell. (1962)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> J.D. Lawrence, "A catalog of special plane curves" , Dover, reprint (1972)</TD></TR></table> |
Revision as of 08:26, 6 June 2020
A plane transcendental curve whose equation in rectangular Cartesian coordinates has the form
$$ x = \pm a \mathop{\rm ln} \ \frac{a + \sqrt {a ^ {2} - y ^ {2} } }{y } \mps \sqrt {a ^ {2} - y ^ {2} } . $$
The tractrix is symmetric about the origin (see Fig.), the $ x $- axis being an asymptote. The point $ ( 0, a) $ is a cusp with vertical tangent. The length of the arc measured from the point $ x = 0 $ is:
$$ l = a \mathop{\rm ln} { \frac{a}{y} } . $$
The radius of curvature is:
$$ r = a \mathop{\rm cot} { \frac{x}{y} } . $$
The area bounded by the tractrix and its asymptote is:
$$ S = { \frac{\pi a ^ {2} }{2} } . $$
Figure: t093570a
The rotation of the tractrix around the $ x $- axis generates a pseudo-sphere. The length of the tangent, that is, of the segment between the point of tangency $ M $ and the $ x $- axis, is constant. This property enables one to regard the tractrix as the trajectory of the end of a line segment of length $ a $, when the other end moves along the $ x $- axis. The notion of a tractrix generalizes to the case when the end of the segment does not move along a straight line, but along some given curve; the curve obtained in this way is called the trajectory of the given curve.
References
[1] | A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian) |
Comments
References
[a1] | M. Berger, B. Gostiaux, "Differential geometry: manifolds, curves, and surfaces" , Springer (1988) (Translated from French) |
[a2] | F. Gomes Teixeira, "Traité des courbes" , 1–3 , Chelsea, reprint (1971) |
[a3] | M. Greenberg, "Euclidean and non-Euclidean geometries" , Freeman (1974) |
[a4] | M. Spivak, "A comprehensive introduction to differential geometry" , 1979 , Publish or Perish pp. 1–5 |
[a5] | K. Fladt, "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell. (1962) |
[a6] | J.D. Lawrence, "A catalog of special plane curves" , Dover, reprint (1972) |
Tractrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tractrix&oldid=49006