Difference between revisions of "Total increment"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | t0933801.png | ||
+ | $#A+1 = 24 n = 0 | ||
+ | $#C+1 = 24 : ~/encyclopedia/old_files/data/T093/T.0903380 Total increment | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''of a function of several variables'' | ''of a function of several variables'' | ||
− | The increment acquired by the function when all the arguments undergo, in general non-zero, increments. More precisely, let a function | + | The increment acquired by the function when all the arguments undergo, in general non-zero, increments. More precisely, let a function $ f $ |
+ | be defined in a neighbourhood of the point $ x ^ {(} 0) = ( x _ {1} ^ {(} 0) \dots x _ {n} ^ {(} 0) ) $ | ||
+ | in the $ n $- | ||
+ | dimensional space $ \mathbf R ^ {n} $ | ||
+ | of the variables $ x _ {1} \dots x _ {n} $. | ||
+ | The increment | ||
− | + | $$ | |
+ | \Delta f = f( x ^ {(} 0) + \Delta x) - f( x ^ {(} 0) ) | ||
+ | $$ | ||
− | of the function | + | of the function $ f $ |
+ | at $ x ^ {(} 0) $, | ||
+ | where | ||
− | + | $$ | |
+ | \Delta x = ( \Delta x _ {1} \dots \Delta x _ {n} ), | ||
+ | $$ | ||
− | + | $$ | |
+ | x ^ {(} 0) + \Delta x = ( x _ {1} ^ {(} 0) + \Delta x _ {1} \dots x _ {n} ^ {(} 0) + \Delta x _ {n} ), | ||
+ | $$ | ||
− | is called the total increment if it is considered as a function of the | + | is called the total increment if it is considered as a function of the $ n $ |
+ | possible increments $ \Delta x _ {1} \dots \Delta x _ {n} $ | ||
+ | of the arguments $ x _ {1} \dots x _ {n} $, | ||
+ | which are subject only to the condition that the point $ x ^ {(} 0) + \Delta x $ | ||
+ | belongs to the domain of definition of $ f $. | ||
+ | Along with the total increment of the function, one can consider the partial increments $ \Delta _ {x _ {k} } f $ | ||
+ | of $ f $ | ||
+ | at a point $ x ^ {(} 0) $ | ||
+ | with respect to the variable $ x _ {k} $, | ||
+ | i.e. increments $ \Delta f $ | ||
+ | for which $ \Delta x _ {j} = 0 $, | ||
+ | $ j = 1 \dots k- 1 , k+ 1 \dots n $, | ||
+ | and $ k $ | ||
+ | is fixed $ ( k = 1 \dots n) $. |
Latest revision as of 08:26, 6 June 2020
of a function of several variables
The increment acquired by the function when all the arguments undergo, in general non-zero, increments. More precisely, let a function $ f $ be defined in a neighbourhood of the point $ x ^ {(} 0) = ( x _ {1} ^ {(} 0) \dots x _ {n} ^ {(} 0) ) $ in the $ n $- dimensional space $ \mathbf R ^ {n} $ of the variables $ x _ {1} \dots x _ {n} $. The increment
$$ \Delta f = f( x ^ {(} 0) + \Delta x) - f( x ^ {(} 0) ) $$
of the function $ f $ at $ x ^ {(} 0) $, where
$$ \Delta x = ( \Delta x _ {1} \dots \Delta x _ {n} ), $$
$$ x ^ {(} 0) + \Delta x = ( x _ {1} ^ {(} 0) + \Delta x _ {1} \dots x _ {n} ^ {(} 0) + \Delta x _ {n} ), $$
is called the total increment if it is considered as a function of the $ n $ possible increments $ \Delta x _ {1} \dots \Delta x _ {n} $ of the arguments $ x _ {1} \dots x _ {n} $, which are subject only to the condition that the point $ x ^ {(} 0) + \Delta x $ belongs to the domain of definition of $ f $. Along with the total increment of the function, one can consider the partial increments $ \Delta _ {x _ {k} } f $ of $ f $ at a point $ x ^ {(} 0) $ with respect to the variable $ x _ {k} $, i.e. increments $ \Delta f $ for which $ \Delta x _ {j} = 0 $, $ j = 1 \dots k- 1 , k+ 1 \dots n $, and $ k $ is fixed $ ( k = 1 \dots n) $.
Total increment. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Total_increment&oldid=49002