Difference between revisions of "Torsion tensor"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | t0933401.png | ||
+ | $#A+1 = 12 n = 0 | ||
+ | $#C+1 = 12 : ~/encyclopedia/old_files/data/T093/T.0903340 Torsion tensor | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | A tensor of type $ ( 1, 2) $ | ||
+ | that is skew-symmetric with respect to its indices, obtained by decomposing the [[Torsion form|torsion form]] of a connection in terms of a local cobasis on a manifold $ M ^ {n} $. | ||
+ | In particular, in terms of a holonomic cobasis $ dx ^ {i} $, | ||
+ | $ i = 1 \dots n $, | ||
+ | the components $ S _ {ij} ^ {k} $ | ||
+ | of the torsion tensor are expressed in terms of the Christoffel symbols (cf. [[Christoffel symbol|Christoffel symbol]]) $ \Gamma _ {ij} ^ {k} $ | ||
+ | of the connection as follows: | ||
+ | $$ | ||
+ | S _ {ij} ^ {k} = \Gamma _ {ij} ^ {k} - \Gamma _ {ji} ^ {k} . | ||
+ | $$ | ||
====Comments==== | ====Comments==== | ||
− | In terms of covariant derivatives | + | In terms of covariant derivatives $ \nabla $ |
+ | and vector fields $ X $, | ||
+ | $ Y $ | ||
+ | the torsion tensor $ T $ | ||
+ | can be described as follows: | ||
− | + | $$ | |
+ | T ( X, Y) = \nabla _ {X} Y - \nabla _ {Y} X - [ X, Y ] . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N.J. Hicks, "Notes on differential geometry" , v. Nostrand (1965)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N.J. Hicks, "Notes on differential geometry" , v. Nostrand (1965)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German)</TD></TR></table> |
Latest revision as of 08:26, 6 June 2020
A tensor of type $ ( 1, 2) $
that is skew-symmetric with respect to its indices, obtained by decomposing the torsion form of a connection in terms of a local cobasis on a manifold $ M ^ {n} $.
In particular, in terms of a holonomic cobasis $ dx ^ {i} $,
$ i = 1 \dots n $,
the components $ S _ {ij} ^ {k} $
of the torsion tensor are expressed in terms of the Christoffel symbols (cf. Christoffel symbol) $ \Gamma _ {ij} ^ {k} $
of the connection as follows:
$$ S _ {ij} ^ {k} = \Gamma _ {ij} ^ {k} - \Gamma _ {ji} ^ {k} . $$
Comments
In terms of covariant derivatives $ \nabla $ and vector fields $ X $, $ Y $ the torsion tensor $ T $ can be described as follows:
$$ T ( X, Y) = \nabla _ {X} Y - \nabla _ {Y} X - [ X, Y ] . $$
References
[a1] | N.J. Hicks, "Notes on differential geometry" , v. Nostrand (1965) |
[a2] | D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968) |
[a3] | W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German) |
Torsion tensor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Torsion_tensor&oldid=49000