Namespaces
Variants
Actions

Difference between revisions of "Toroidal coordinates"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t0932701.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t0932702.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t0932703.png" /> related to the Cartesian rectangular coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t0932704.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t0932705.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t0932706.png" /> by the formulas:
+
<!--
 +
t0932701.png
 +
$#A+1 = 24 n = 0
 +
$#C+1 = 24 : ~/encyclopedia/old_files/data/T093/T.0903270 Toroidal coordinates
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t0932707.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t0932708.png" /></td> </tr></table>
+
The numbers  $  \sigma $,
 +
$  \tau $
 +
and  $  \phi $
 +
related to the Cartesian rectangular coordinates  $  x $,
 +
$  y $
 +
and  $  z $
 +
by the formulas:
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t0932709.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t09327010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t09327011.png" />. The coordinate surfaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t09327012.png" /> are spheres with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t09327013.png" /> and radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t09327014.png" />; the surfaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t09327015.png" /> are tori with axial circle in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t09327016.png" />-plane, centre at the origin and radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t09327017.png" />, while the circle of the transverse cross section has radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t09327018.png" />; the surfaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t09327019.png" /> are the half-planes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t09327020.png" />. The system of toroidal coordinates is orthogonal.
+
$$
 +
= \
 +
 
 +
\frac{a  \sinh  \tau }{\cosh  \tau - \cos  \sigma }
 +
\
 +
\cos  \phi ,\ \
 +
= \
 +
 
 +
\frac{a  \sinh  \tau }{\cosh  \tau - \cos  \sigma }
 +
\
 +
\sin  \phi ,
 +
$$
 +
 
 +
$$
 +
=
 +
\frac{a  \sin  \sigma }{\cosh  \tau - \cos  \sigma }
 +
,
 +
$$
 +
 
 +
where  $  - \pi \leq  \sigma \leq  \pi $,  
 +
$  0 \leq  \tau < \infty $,
 +
0 \leq  \phi < 2 \pi $.  
 +
The coordinate surfaces $  \sigma = \textrm{ const } $
 +
are spheres with centre $  ( 0, 0, a  \mathop{\rm cot}  \sigma ) $
 +
and radius $  a/| \sin  \sigma | $;  
 +
the surfaces $  \tau = \textrm{ const } $
 +
are tori with axial circle in the $  Oxy $-
 +
plane, centre at the origin and radius $  a  \mathop{\rm coth}  \tau $,  
 +
while the circle of the transverse cross section has radius $  a/ \sinh  \tau $;  
 +
the surfaces $  \phi = \textrm{ const } $
 +
are the half-planes $  y/x = \mathop{\rm tan}  \phi $.  
 +
The system of toroidal coordinates is orthogonal.
  
 
The [[Lamé coefficients|Lamé coefficients]] are:
 
The [[Lamé coefficients|Lamé coefficients]] are:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t09327021.png" /></td> </tr></table>
+
$$
 +
L _  \sigma  = L _  \tau  = \
 +
 
 +
\frac{a  ^ {2} }{( \cosh  \tau - \cos  \sigma )  ^ {2} }
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t09327022.png" /></td> </tr></table>
+
$$
 +
L _  \phi  =
 +
\frac{a  ^ {2}  \sinh  ^ {2}  \tau }{( \cosh  \tau - \cos  \sigma )  ^ {2} }
 +
.
 +
$$
  
 
The [[Laplace operator|Laplace operator]] is:
 
The [[Laplace operator|Laplace operator]] is:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t09327023.png" /></td> </tr></table>
+
$$
 +
\Delta f  = \
 +
 
 +
\frac{( \cosh  \tau - \cos  \sigma )  ^ {3} }{a  ^ {2}  \sinh  \tau }
 +
 
 +
\left [
 +
{
 +
\frac \partial {\partial  \sigma }
 +
}
 +
\left (
 +
 
 +
\frac{\sinh  \tau }{\cosh  \tau - \cos  \sigma }
 +
 
 +
\frac{\partial  f }{\partial  \sigma }
 +
 
 +
\right ) \right . +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093270/t09327024.png" /></td> </tr></table>
+
$$
 +
+ \left .
 +
{
 +
\frac \partial {\partial  \tau }
 +
} \left (
 +
\frac{\sinh
 +
\tau }{\cosh  \tau - \cos  \sigma
 +
}
 +
 +
\frac{\partial  f }{\partial  \tau }
 +
\right ) + {
 +
\frac{1}{
 +
\sinh  \tau ( \cosh  \tau - \cos  \sigma
 +
) }
 +
}
 +
\frac{\partial  ^ {2} f }{\partial  \phi  ^ {2} }
 +
\right ] .
 +
$$

Latest revision as of 08:26, 6 June 2020


The numbers $ \sigma $, $ \tau $ and $ \phi $ related to the Cartesian rectangular coordinates $ x $, $ y $ and $ z $ by the formulas:

$$ x = \ \frac{a \sinh \tau }{\cosh \tau - \cos \sigma } \ \cos \phi ,\ \ y = \ \frac{a \sinh \tau }{\cosh \tau - \cos \sigma } \ \sin \phi , $$

$$ z = \frac{a \sin \sigma }{\cosh \tau - \cos \sigma } , $$

where $ - \pi \leq \sigma \leq \pi $, $ 0 \leq \tau < \infty $, $ 0 \leq \phi < 2 \pi $. The coordinate surfaces $ \sigma = \textrm{ const } $ are spheres with centre $ ( 0, 0, a \mathop{\rm cot} \sigma ) $ and radius $ a/| \sin \sigma | $; the surfaces $ \tau = \textrm{ const } $ are tori with axial circle in the $ Oxy $- plane, centre at the origin and radius $ a \mathop{\rm coth} \tau $, while the circle of the transverse cross section has radius $ a/ \sinh \tau $; the surfaces $ \phi = \textrm{ const } $ are the half-planes $ y/x = \mathop{\rm tan} \phi $. The system of toroidal coordinates is orthogonal.

The Lamé coefficients are:

$$ L _ \sigma = L _ \tau = \ \frac{a ^ {2} }{( \cosh \tau - \cos \sigma ) ^ {2} } , $$

$$ L _ \phi = \frac{a ^ {2} \sinh ^ {2} \tau }{( \cosh \tau - \cos \sigma ) ^ {2} } . $$

The Laplace operator is:

$$ \Delta f = \ \frac{( \cosh \tau - \cos \sigma ) ^ {3} }{a ^ {2} \sinh \tau } \left [ { \frac \partial {\partial \sigma } } \left ( \frac{\sinh \tau }{\cosh \tau - \cos \sigma } \frac{\partial f }{\partial \sigma } \right ) \right . + $$

$$ + \left . { \frac \partial {\partial \tau } } \left ( \frac{\sinh \tau }{\cosh \tau - \cos \sigma } \frac{\partial f }{\partial \tau } \right ) + { \frac{1}{ \sinh \tau ( \cosh \tau - \cos \sigma ) } } \frac{\partial ^ {2} f }{\partial \phi ^ {2} } \right ] . $$

How to Cite This Entry:
Toroidal coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Toroidal_coordinates&oldid=48996
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article