Difference between revisions of "Toroidal coordinates"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | t0932701.png | ||
+ | $#A+1 = 24 n = 0 | ||
+ | $#C+1 = 24 : ~/encyclopedia/old_files/data/T093/T.0903270 Toroidal coordinates | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The numbers $ \sigma $, | |
+ | $ \tau $ | ||
+ | and $ \phi $ | ||
+ | related to the Cartesian rectangular coordinates $ x $, | ||
+ | $ y $ | ||
+ | and $ z $ | ||
+ | by the formulas: | ||
− | + | $$ | |
+ | x = \ | ||
+ | |||
+ | \frac{a \sinh \tau }{\cosh \tau - \cos \sigma } | ||
+ | \ | ||
+ | \cos \phi ,\ \ | ||
+ | y = \ | ||
+ | |||
+ | \frac{a \sinh \tau }{\cosh \tau - \cos \sigma } | ||
+ | \ | ||
+ | \sin \phi , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | z = | ||
+ | \frac{a \sin \sigma }{\cosh \tau - \cos \sigma } | ||
+ | , | ||
+ | $$ | ||
+ | |||
+ | where $ - \pi \leq \sigma \leq \pi $, | ||
+ | $ 0 \leq \tau < \infty $, | ||
+ | $ 0 \leq \phi < 2 \pi $. | ||
+ | The coordinate surfaces $ \sigma = \textrm{ const } $ | ||
+ | are spheres with centre $ ( 0, 0, a \mathop{\rm cot} \sigma ) $ | ||
+ | and radius $ a/| \sin \sigma | $; | ||
+ | the surfaces $ \tau = \textrm{ const } $ | ||
+ | are tori with axial circle in the $ Oxy $- | ||
+ | plane, centre at the origin and radius $ a \mathop{\rm coth} \tau $, | ||
+ | while the circle of the transverse cross section has radius $ a/ \sinh \tau $; | ||
+ | the surfaces $ \phi = \textrm{ const } $ | ||
+ | are the half-planes $ y/x = \mathop{\rm tan} \phi $. | ||
+ | The system of toroidal coordinates is orthogonal. | ||
The [[Lamé coefficients|Lamé coefficients]] are: | The [[Lamé coefficients|Lamé coefficients]] are: | ||
− | + | $$ | |
+ | L _ \sigma = L _ \tau = \ | ||
+ | |||
+ | \frac{a ^ {2} }{( \cosh \tau - \cos \sigma ) ^ {2} } | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | L _ \phi = | ||
+ | \frac{a ^ {2} \sinh ^ {2} \tau }{( \cosh \tau - \cos \sigma ) ^ {2} } | ||
+ | . | ||
+ | $$ | ||
The [[Laplace operator|Laplace operator]] is: | The [[Laplace operator|Laplace operator]] is: | ||
− | + | $$ | |
+ | \Delta f = \ | ||
+ | |||
+ | \frac{( \cosh \tau - \cos \sigma ) ^ {3} }{a ^ {2} \sinh \tau } | ||
+ | |||
+ | \left [ | ||
+ | { | ||
+ | \frac \partial {\partial \sigma } | ||
+ | } | ||
+ | \left ( | ||
+ | |||
+ | \frac{\sinh \tau }{\cosh \tau - \cos \sigma } | ||
+ | |||
+ | \frac{\partial f }{\partial \sigma } | ||
+ | |||
+ | \right ) \right . + | ||
+ | $$ | ||
− | + | $$ | |
+ | + \left . | ||
+ | { | ||
+ | \frac \partial {\partial \tau } | ||
+ | } \left ( | ||
+ | \frac{\sinh | ||
+ | \tau }{\cosh \tau - \cos \sigma | ||
+ | } | ||
+ | |||
+ | \frac{\partial f }{\partial \tau } | ||
+ | \right ) + { | ||
+ | \frac{1}{ | ||
+ | \sinh \tau ( \cosh \tau - \cos \sigma | ||
+ | ) } | ||
+ | } | ||
+ | \frac{\partial ^ {2} f }{\partial \phi ^ {2} } | ||
+ | \right ] . | ||
+ | $$ |
Latest revision as of 08:26, 6 June 2020
The numbers $ \sigma $,
$ \tau $
and $ \phi $
related to the Cartesian rectangular coordinates $ x $,
$ y $
and $ z $
by the formulas:
$$ x = \ \frac{a \sinh \tau }{\cosh \tau - \cos \sigma } \ \cos \phi ,\ \ y = \ \frac{a \sinh \tau }{\cosh \tau - \cos \sigma } \ \sin \phi , $$
$$ z = \frac{a \sin \sigma }{\cosh \tau - \cos \sigma } , $$
where $ - \pi \leq \sigma \leq \pi $, $ 0 \leq \tau < \infty $, $ 0 \leq \phi < 2 \pi $. The coordinate surfaces $ \sigma = \textrm{ const } $ are spheres with centre $ ( 0, 0, a \mathop{\rm cot} \sigma ) $ and radius $ a/| \sin \sigma | $; the surfaces $ \tau = \textrm{ const } $ are tori with axial circle in the $ Oxy $- plane, centre at the origin and radius $ a \mathop{\rm coth} \tau $, while the circle of the transverse cross section has radius $ a/ \sinh \tau $; the surfaces $ \phi = \textrm{ const } $ are the half-planes $ y/x = \mathop{\rm tan} \phi $. The system of toroidal coordinates is orthogonal.
The Lamé coefficients are:
$$ L _ \sigma = L _ \tau = \ \frac{a ^ {2} }{( \cosh \tau - \cos \sigma ) ^ {2} } , $$
$$ L _ \phi = \frac{a ^ {2} \sinh ^ {2} \tau }{( \cosh \tau - \cos \sigma ) ^ {2} } . $$
The Laplace operator is:
$$ \Delta f = \ \frac{( \cosh \tau - \cos \sigma ) ^ {3} }{a ^ {2} \sinh \tau } \left [ { \frac \partial {\partial \sigma } } \left ( \frac{\sinh \tau }{\cosh \tau - \cos \sigma } \frac{\partial f }{\partial \sigma } \right ) \right . + $$
$$ + \left . { \frac \partial {\partial \tau } } \left ( \frac{\sinh \tau }{\cosh \tau - \cos \sigma } \frac{\partial f }{\partial \tau } \right ) + { \frac{1}{ \sinh \tau ( \cosh \tau - \cos \sigma ) } } \frac{\partial ^ {2} f }{\partial \phi ^ {2} } \right ] . $$
Toroidal coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Toroidal_coordinates&oldid=48996