Difference between revisions of "Torelli theorems"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | t0932601.png | ||
+ | $#A+1 = 79 n = 0 | ||
+ | $#C+1 = 79 : ~/encyclopedia/old_files/data/T093/T.0903260 Torelli theorems | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Theorems stating that the [[Hodge structure|Hodge structure]] (period matrix) in the cohomology spaces $ H ^ {*} ( X, \mathbf C ) $ | |
+ | of an algebraic or Kähler variety $ X $ | ||
+ | completely characterizes the polarized Jacobi variety of $ X $. | ||
− | The | + | The classical Torelli theorem relates to the case of curves (see [[#References|[1]]], [[#References|[2]]]) and states that a curve is defined up to an isomorphism by its periods. Let $ X $ |
+ | be a curve of genus $ g $, | ||
+ | let $ \gamma _ {1} \dots \gamma _ {2g} $ | ||
+ | be a basis of $ H _ {1} ( X, \mathbf Z ) $, | ||
+ | let $ \omega _ {1} \dots \omega _ {g} \in H ^ {0} ( X, \Omega _ {X} ^ {1} ) = H ^ {1,0} \subset H ^ {1} ( X, \mathbf C ) $ | ||
+ | be a basis of the Abelian differentials (cf. [[Abelian differential|Abelian differential]]) and let the $ ( g \times 2g) $- | ||
+ | matrix $ \Omega = \| \pi _ {ij} \| $ | ||
+ | be the period matrix, where $ \pi _ {ij} = \int _ {\gamma _ {j} } \omega _ {i} $. | ||
+ | The intersection of cycles $ \gamma _ {i} \gamma _ {j} = q _ {ij} $ | ||
+ | defines a skew-symmetric bilinear form $ Q $ | ||
+ | in $ H _ {1} ( X, \mathbf Z ) $. | ||
+ | Let $ X $ | ||
+ | and $ \widetilde{X} $ | ||
+ | be two curves. If bases $ \gamma $ | ||
+ | and $ \omega $ | ||
+ | can be chosen with respect to which the period matrices $ \Omega $ | ||
+ | and the intersection matrices $ Q $ | ||
+ | of the curves are the same, then $ X $ | ||
+ | and $ \widetilde{X} $ | ||
+ | are isomorphic. In other words, if the canonically polarized Jacobians of the curves $ X $ | ||
+ | and $ \widetilde{X} $ | ||
+ | are isomorphic, then $ X \simeq \widetilde{X} $. | ||
− | + | Let $ X $ | |
+ | be a projective variety (or, more generally, a compact [[Kähler manifold|Kähler manifold]]), and let $ D = D _ {k} $ | ||
+ | be the Griffiths variety associated with the primitive cohomology spaces $ H ^ {k} ( X, \mathbf C ) _ {0} $( | ||
+ | see [[Period mapping|Period mapping]]). Then $ D $ | ||
+ | contains the period matrices of primitive $ k $- | ||
+ | forms on all varieties homeomorphic to $ X $. | ||
+ | The periods depend on the choice of the isomorphism of $ H ^ {k} ( X, \mathbf C ) _ {0} $ | ||
+ | into a fixed space $ H $. | ||
+ | There is a naturally defined group $ \Gamma $ | ||
+ | of analytic automorphisms of $ D $ | ||
+ | such that $ M = D/ \Gamma $ | ||
+ | is an analytic space and $ X $ | ||
+ | determines a unique point $ \Phi ( X) \in M $. | ||
+ | In this situation, $ M $ | ||
+ | is called the modular space or the moduli space of Hodge structures. | ||
− | + | The global Torelli problem consists in the elucidation of the question whether $ \Phi ( X) $ | |
+ | uniquely determines $ X $ | ||
+ | up to an isomorphism. In the case of an affirmative solution, the problem corresponds to the statement of the so-called (generalized) Torelli theorem. Torelli's theorem holds trivially for Abelian varieties in the case of $ 1 $- | ||
+ | forms and in the case of $ 2 $- | ||
+ | forms (see [[#References|[3]]]). Essentially, the only non-trivial case of a solution of the global Torelli problem (1984) is the case of a [[K3-surface| $ K3 $- | ||
+ | surface]]. The Torelli theorem has also been generalized to the case of Kähler $ K3 $- | ||
+ | surfaces. | ||
− | + | The local Torelli problem consists in solving the question when the Hodge structures on the cohomology spaces separate points in the local moduli space (the Kuranishi space) for a variety $ X $. | |
+ | Let $ \pi : \mathfrak X \rightarrow B $ | ||
+ | be a family of polarized algebraic varieties, $ \pi ^ {-} 1 ( 0) = X $, | ||
+ | and let $ M = D/ \Gamma $ | ||
+ | be the Griffiths variety associated with the periods of primitive $ k $- | ||
+ | forms on $ X $. | ||
+ | The period mapping $ \Phi : B \rightarrow M $ | ||
+ | associates $ t \in B $ | ||
+ | with the period matrix of $ k $- | ||
+ | forms on $ \pi ^ {-} 1 ( t) $. | ||
+ | This mapping is holomorphic; the corresponding tangent mapping $ d \Phi $ | ||
+ | has been calculated (see [[#References|[3]]]). The local Torelli problem is equivalent to the question: When is $ d \Phi $ | ||
+ | an imbedding? By considering the mapping dual to $ d \Phi $ | ||
+ | one obtains a cohomological criterion for the validity of the local Torelli theorem: If the mapping | ||
− | is an epimorphism, then the periods of the | + | $$ |
+ | \mu : \ | ||
+ | \oplus _ {0 \leq r \leq [( k - 1)/2] } | ||
+ | H ^ {n - r - 1 } | ||
+ | ( X, \Omega ^ {n - k + r + 1 } ) | ||
+ | \otimes H ^ {r} | ||
+ | ( X, \Omega ^ {k - r } ) \rightarrow | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \rightarrow \ | ||
+ | H ^ {n - 1 } ( X, \Omega ^ {1} \otimes \Omega ^ {n} ) | ||
+ | $$ | ||
+ | |||
+ | is an epimorphism, then the periods of the $ k $- | ||
+ | forms give local moduli for $ X $. | ||
+ | The local Torelli theorem for curves is equivalent to the fact that quadratic differentials are generated by Abelian differentials. Noether's theorem states that this is true if $ g = 2 $ | ||
+ | or if $ g > 2 $ | ||
+ | and $ X $ | ||
+ | is not hyper-elliptic. The local Torelli theorem clearly holds in the case $ k = n $ | ||
+ | if the canonical class is trivial. Such varieties include the Abelian varieties, hypersurfaces of degree $ n + 2 $ | ||
+ | in $ P ^ {n + 1 } $ | ||
+ | and $ K3 $- | ||
+ | surfaces. The validity of the local Torelli theorem has been established for various classes of higher-dimensional varieties. For non-singular hypersurfaces of degree $ d $ | ||
+ | in $ P ^ {n + 1 } $ | ||
+ | it has been proved that the period mapping is an imbedding at a generic point except for the case $ n = 2 $, | ||
+ | $ d = 3 $ | ||
+ | and, possibly, the cases: $ d $ | ||
+ | divides $ n + 2 $, | ||
+ | $ d = 4 $ | ||
+ | and $ n = 4m $, | ||
+ | or $ d = 6 $ | ||
+ | and $ n = 6m + 1 $( | ||
+ | see [[#References|[4]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Torelli, ''Rend. Accad. Lincei V'' , '''22''' (1913) pp. 98–103</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Weil, "Zum Beweis der Torellischen Satzes" ''Nachr. Akad. Wiss. Göttingen'' (1957) pp. 33–53 {{MR|89483}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.A. Griffiths, "Periods of integrals on algebraic manifolds I, II" ''Amer. J. Math.'' , '''90''' (1968) pp. 568–626; 805–865</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R. Donagi, "Generic Torelli for projective hypersurfaces" ''Compos. Math.'' , '''50''' (1983) pp. 325–353 {{MR|0720291}} {{ZBL|0598.14007}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Torelli, ''Rend. Accad. Lincei V'' , '''22''' (1913) pp. 98–103</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Weil, "Zum Beweis der Torellischen Satzes" ''Nachr. Akad. Wiss. Göttingen'' (1957) pp. 33–53 {{MR|89483}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.A. Griffiths, "Periods of integrals on algebraic manifolds I, II" ''Amer. J. Math.'' , '''90''' (1968) pp. 568–626; 805–865</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R. Donagi, "Generic Torelli for projective hypersurfaces" ''Compos. Math.'' , '''50''' (1983) pp. 325–353 {{MR|0720291}} {{ZBL|0598.14007}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.A. Griffiths (ed.) , ''Topics in transcendental algebraic geometry'' , Princeton Univ. Press (1984) {{MR|0756842}} {{ZBL|0528.00004}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. van de Ven, "Compact complex surfaces" , Springer (1984) {{MR|}} {{ZBL|0718.14023}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.A. Griffiths (ed.) , ''Topics in transcendental algebraic geometry'' , Princeton Univ. Press (1984) {{MR|0756842}} {{ZBL|0528.00004}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. van de Ven, "Compact complex surfaces" , Springer (1984) {{MR|}} {{ZBL|0718.14023}} </TD></TR></table> |
Latest revision as of 08:26, 6 June 2020
Theorems stating that the Hodge structure (period matrix) in the cohomology spaces $ H ^ {*} ( X, \mathbf C ) $
of an algebraic or Kähler variety $ X $
completely characterizes the polarized Jacobi variety of $ X $.
The classical Torelli theorem relates to the case of curves (see [1], [2]) and states that a curve is defined up to an isomorphism by its periods. Let $ X $ be a curve of genus $ g $, let $ \gamma _ {1} \dots \gamma _ {2g} $ be a basis of $ H _ {1} ( X, \mathbf Z ) $, let $ \omega _ {1} \dots \omega _ {g} \in H ^ {0} ( X, \Omega _ {X} ^ {1} ) = H ^ {1,0} \subset H ^ {1} ( X, \mathbf C ) $ be a basis of the Abelian differentials (cf. Abelian differential) and let the $ ( g \times 2g) $- matrix $ \Omega = \| \pi _ {ij} \| $ be the period matrix, where $ \pi _ {ij} = \int _ {\gamma _ {j} } \omega _ {i} $. The intersection of cycles $ \gamma _ {i} \gamma _ {j} = q _ {ij} $ defines a skew-symmetric bilinear form $ Q $ in $ H _ {1} ( X, \mathbf Z ) $. Let $ X $ and $ \widetilde{X} $ be two curves. If bases $ \gamma $ and $ \omega $ can be chosen with respect to which the period matrices $ \Omega $ and the intersection matrices $ Q $ of the curves are the same, then $ X $ and $ \widetilde{X} $ are isomorphic. In other words, if the canonically polarized Jacobians of the curves $ X $ and $ \widetilde{X} $ are isomorphic, then $ X \simeq \widetilde{X} $.
Let $ X $ be a projective variety (or, more generally, a compact Kähler manifold), and let $ D = D _ {k} $ be the Griffiths variety associated with the primitive cohomology spaces $ H ^ {k} ( X, \mathbf C ) _ {0} $( see Period mapping). Then $ D $ contains the period matrices of primitive $ k $- forms on all varieties homeomorphic to $ X $. The periods depend on the choice of the isomorphism of $ H ^ {k} ( X, \mathbf C ) _ {0} $ into a fixed space $ H $. There is a naturally defined group $ \Gamma $ of analytic automorphisms of $ D $ such that $ M = D/ \Gamma $ is an analytic space and $ X $ determines a unique point $ \Phi ( X) \in M $. In this situation, $ M $ is called the modular space or the moduli space of Hodge structures.
The global Torelli problem consists in the elucidation of the question whether $ \Phi ( X) $ uniquely determines $ X $ up to an isomorphism. In the case of an affirmative solution, the problem corresponds to the statement of the so-called (generalized) Torelli theorem. Torelli's theorem holds trivially for Abelian varieties in the case of $ 1 $- forms and in the case of $ 2 $- forms (see [3]). Essentially, the only non-trivial case of a solution of the global Torelli problem (1984) is the case of a $ K3 $- surface. The Torelli theorem has also been generalized to the case of Kähler $ K3 $- surfaces.
The local Torelli problem consists in solving the question when the Hodge structures on the cohomology spaces separate points in the local moduli space (the Kuranishi space) for a variety $ X $. Let $ \pi : \mathfrak X \rightarrow B $ be a family of polarized algebraic varieties, $ \pi ^ {-} 1 ( 0) = X $, and let $ M = D/ \Gamma $ be the Griffiths variety associated with the periods of primitive $ k $- forms on $ X $. The period mapping $ \Phi : B \rightarrow M $ associates $ t \in B $ with the period matrix of $ k $- forms on $ \pi ^ {-} 1 ( t) $. This mapping is holomorphic; the corresponding tangent mapping $ d \Phi $ has been calculated (see [3]). The local Torelli problem is equivalent to the question: When is $ d \Phi $ an imbedding? By considering the mapping dual to $ d \Phi $ one obtains a cohomological criterion for the validity of the local Torelli theorem: If the mapping
$$ \mu : \ \oplus _ {0 \leq r \leq [( k - 1)/2] } H ^ {n - r - 1 } ( X, \Omega ^ {n - k + r + 1 } ) \otimes H ^ {r} ( X, \Omega ^ {k - r } ) \rightarrow $$
$$ \rightarrow \ H ^ {n - 1 } ( X, \Omega ^ {1} \otimes \Omega ^ {n} ) $$
is an epimorphism, then the periods of the $ k $- forms give local moduli for $ X $. The local Torelli theorem for curves is equivalent to the fact that quadratic differentials are generated by Abelian differentials. Noether's theorem states that this is true if $ g = 2 $ or if $ g > 2 $ and $ X $ is not hyper-elliptic. The local Torelli theorem clearly holds in the case $ k = n $ if the canonical class is trivial. Such varieties include the Abelian varieties, hypersurfaces of degree $ n + 2 $ in $ P ^ {n + 1 } $ and $ K3 $- surfaces. The validity of the local Torelli theorem has been established for various classes of higher-dimensional varieties. For non-singular hypersurfaces of degree $ d $ in $ P ^ {n + 1 } $ it has been proved that the period mapping is an imbedding at a generic point except for the case $ n = 2 $, $ d = 3 $ and, possibly, the cases: $ d $ divides $ n + 2 $, $ d = 4 $ and $ n = 4m $, or $ d = 6 $ and $ n = 6m + 1 $( see [4]).
References
[1] | R. Torelli, Rend. Accad. Lincei V , 22 (1913) pp. 98–103 |
[2] | A. Weil, "Zum Beweis der Torellischen Satzes" Nachr. Akad. Wiss. Göttingen (1957) pp. 33–53 MR89483 |
[3] | P.A. Griffiths, "Periods of integrals on algebraic manifolds I, II" Amer. J. Math. , 90 (1968) pp. 568–626; 805–865 |
[4] | R. Donagi, "Generic Torelli for projective hypersurfaces" Compos. Math. , 50 (1983) pp. 325–353 MR0720291 Zbl 0598.14007 |
Comments
References
[a1] | P.A. Griffiths (ed.) , Topics in transcendental algebraic geometry , Princeton Univ. Press (1984) MR0756842 Zbl 0528.00004 |
[a2] | A. van de Ven, "Compact complex surfaces" , Springer (1984) Zbl 0718.14023 |
Torelli theorems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Torelli_theorems&oldid=48995