Namespaces
Variants
Actions

Difference between revisions of "Toeplitz form, indefinite"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A quadratic form, defined on the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092940/t0929401.png" /> of infinite sequences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092940/t0929402.png" /> of finite support by the expression
+
<!--
 +
t0929401.png
 +
$#A+1 = 11 n = 0
 +
$#C+1 = 11 : ~/encyclopedia/old_files/data/T092/T.0902940 Toeplitz form, indefinite
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092940/t0929403.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092940/t0929404.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092940/t0929405.png" />, is such that, from some dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092940/t0929406.png" /> onwards, the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092940/t0929407.png" /> reduces to canonical form as a sum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092940/t0929408.png" /> squares on each subspace
+
A quadratic form, defined on the space  $  \Phi $
 +
of infinite sequences  $  x = \{ \xi _ {p} \} _ {- \infty }  ^  \infty  $
 +
of finite support by the expression
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092940/t0929409.png" /></td> </tr></table>
+
$$
 +
( x, x)  = \sum _ {- \infty } ^ { {+ }  \infty }
 +
c _ {p - q }  \xi _ {p} \overline \xi \; _ {q} ,
 +
$$
  
An indefinite scalar product may be introduced in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092940/t09294010.png" /> by means of the Toeplitz form; after factorization over the isotropic subspace and completion, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092940/t09294011.png" /> becomes a [[Pontryagin space|Pontryagin space]].
+
where the sequence  $  c = \{ c _ {p} \} _ {- \infty }  ^  \infty  $,
 +
$  c _ {0} = \overline{ {c _ {0} }}\; $,
 +
is such that, from some dimension  $  N $
 +
onwards, the form  $  ( x, x) $
 +
reduces to canonical form as a sum of  $  \kappa $
 +
squares on each subspace
 +
 
 +
$$
 +
\Phi  ^ {N}  \subset  \Phi ,\ \
 +
\Phi  ^ {N}  =  \{ {\xi _ {p} } : {\xi _ {p} = 0, | p | > N } \}
 +
.
 +
$$
 +
 
 +
An indefinite scalar product may be introduced in $  \Phi $
 +
by means of the Toeplitz form; after factorization over the isotropic subspace and completion, $  \Phi $
 +
becomes a [[Pontryagin space|Pontryagin space]].

Revision as of 08:25, 6 June 2020


A quadratic form, defined on the space $ \Phi $ of infinite sequences $ x = \{ \xi _ {p} \} _ {- \infty } ^ \infty $ of finite support by the expression

$$ ( x, x) = \sum _ {- \infty } ^ { {+ } \infty } c _ {p - q } \xi _ {p} \overline \xi \; _ {q} , $$

where the sequence $ c = \{ c _ {p} \} _ {- \infty } ^ \infty $, $ c _ {0} = \overline{ {c _ {0} }}\; $, is such that, from some dimension $ N $ onwards, the form $ ( x, x) $ reduces to canonical form as a sum of $ \kappa $ squares on each subspace

$$ \Phi ^ {N} \subset \Phi ,\ \ \Phi ^ {N} = \{ {\xi _ {p} } : {\xi _ {p} = 0, | p | > N } \} . $$

An indefinite scalar product may be introduced in $ \Phi $ by means of the Toeplitz form; after factorization over the isotropic subspace and completion, $ \Phi $ becomes a Pontryagin space.

How to Cite This Entry:
Toeplitz form, indefinite. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Toeplitz_form,_indefinite&oldid=48981
This article was adapted from an original article by N.K. Nikol'skiiB.S. Pavlov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article