Namespaces
Variants
Actions

Difference between revisions of "Theta-series"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
Line 1: Line 1:
''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t0926102.png" />-series''
+
<!--
 +
t0926102.png
 +
$#A+1 = 54 n = 0
 +
$#C+1 = 54 : ~/encyclopedia/old_files/data/T092/T.0902610 Theta\AAhseries,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
'' $  \theta $-
 +
series''
  
 
A series of functions used in the representation of automorphic forms and functions (cf. [[Automorphic form|Automorphic form]]; [[Automorphic function|Automorphic function]]).
 
A series of functions used in the representation of automorphic forms and functions (cf. [[Automorphic form|Automorphic form]]; [[Automorphic function|Automorphic function]]).
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t0926103.png" /> be a domain in the complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t0926104.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t0926105.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t0926106.png" /> be the discrete group of automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t0926107.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t0926108.png" /> is finite, then any function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t0926109.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261010.png" />, meromorphic on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261011.png" /> gives rise to an automorphic function
+
Let $  D $
 +
be a domain in the complex space $  \mathbf C  ^ {p} $,  
 +
$  p \geq  1 $,  
 +
and let $  \Gamma $
 +
be the discrete group of automorphisms of $  D $.  
 +
If $  \Gamma $
 +
is finite, then any function $  H ( z) $,  
 +
$  z = ( z _ {1} \dots z _ {p} ) $,  
 +
meromorphic on $  D $
 +
gives rise to an automorphic function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261012.png" /></td> </tr></table>
+
$$
 +
\sum _ {\gamma \in \Gamma } H ( \gamma ( z)).
 +
$$
  
For infinite groups one needs convergence multipliers to obtain a theta-series. A Poincaré series, associated to a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261013.png" />, is a series of the form
+
For infinite groups one needs convergence multipliers to obtain a theta-series. A Poincaré series, associated to a group $  \Gamma $,  
 +
is a series of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261014.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\theta _ {m} ( z)  = \
 +
\sum _ {\gamma \in \Gamma } {}  ^ {*}
 +
J _  \gamma  ^ {m} ( z)
 +
H ( \gamma ( z)),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261015.png" /> is the Jacobian of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261017.png" /> is an integer called the weight or the order. The asterisk means that summation is over those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261018.png" /> which yield distinct terms in the series. Under a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261020.png" />, the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261021.png" /> is transformed according to the law <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261022.png" />, and hence is an automorphic function of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261023.png" />, associated to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261024.png" />. The quotient of two theta-series of the same weight gives an automorphic function.
+
where $  J _  \gamma  ( z) = d \gamma ( z)/dz $
 +
is the Jacobian of the function $  z \mapsto \gamma ( z) $
 +
and $  m $
 +
is an integer called the weight or the order. The asterisk means that summation is over those $  \gamma \in \Gamma $
 +
which yield distinct terms in the series. Under a mapping $  z \mapsto \alpha ( z) $,  
 +
$  \alpha \in \Gamma $,  
 +
the function $  \theta _ {m} ( z) $
 +
is transformed according to the law $  \theta _ {m} ( \alpha ( z)) = J _  \alpha  ^ {-} m ( z) \theta _ {m} ( z) $,  
 +
and hence is an automorphic function of weight $  m $,  
 +
associated to $  \Gamma $.  
 +
The quotient of two theta-series of the same weight gives an automorphic function.
  
 
The theta-series
 
The theta-series
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261025.png" /></td> </tr></table>
+
$$
 +
E _ {m} ( z)  = \
 +
\sum _ {\gamma \in \Gamma } {}  ^ {*}
 +
J _  \gamma  ^ {m} ( z)
 +
$$
 +
 
 +
is called an Eisenstein theta-series, or simply an Eisenstein series, associated with  $  \Gamma $.
  
is called an Eisenstein theta-series, or simply an Eisenstein series, associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261026.png" />.
+
H. Poincaré, in a series of articles in the 1880's, developed the theory of theta-series in connection with the study of automorphic functions of one complex variable. Let  $  \Gamma $
 +
be a discrete [[Fuchsian group|Fuchsian group]] of fractional-linear transformations
  
H. Poincaré, in a series of articles in the 1880's, developed the theory of theta-series in connection with the study of automorphic functions of one complex variable. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261027.png" /> be a discrete [[Fuchsian group|Fuchsian group]] of fractional-linear transformations
+
$$
 +
\gamma ( z)  = \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261028.png" /></td> </tr></table>
+
\frac{az + b }{cz + d }
 +
,\ \
 +
ad - bc = 1,
 +
$$
  
mapping the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261029.png" /> onto itself. For this case the Poincaré series has the form
+
mapping the unit disc $  D = \{ {z } : {| z | < 1 } \} $
 +
onto itself. For this case the Poincaré series has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261030.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\theta _ {m} ( z)  = \
 +
\sum _ {\gamma \in \Gamma } {}  ^ {*}
 +
( cz + d)  ^ {-} 2m
 +
H \left (
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261031.png" />, for example, is a bounded holomorphic function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261032.png" />. Under the hypothesis that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261033.png" /> acts freely on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261034.png" /> and that the quotient space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261035.png" /> is compact, it has been shown that the series (2) converges absolutely and uniformly on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261036.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261037.png" />. With the stated conditions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261039.png" />, this assertion holds also for the series (1) in the case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261040.png" /> is a bounded domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261041.png" />. For certain Fuchsian groups the series (2) converges also for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261042.png" />.
+
\frac{az + b }{cz + d }
 +
 
 +
\right ) ,
 +
$$
 +
 
 +
where $  H $,  
 +
for example, is a bounded holomorphic function on $  D $.  
 +
Under the hypothesis that $  \Gamma $
 +
acts freely on $  D $
 +
and that the quotient space $  X = D/ \Gamma $
 +
is compact, it has been shown that the series (2) converges absolutely and uniformly on $  D $
 +
for $  m \geq  2 $.  
 +
With the stated conditions on $  H $
 +
and $  \Gamma $,  
 +
this assertion holds also for the series (1) in the case where $  D $
 +
is a bounded domain in $  \mathbf C  ^ {p} $.  
 +
For certain Fuchsian groups the series (2) converges also for $  m = 1 $.
  
 
The term "theta-series" is also applied to series expansions of theta-functions, which are used in the representation of elliptic functions (cf. [[Jacobi elliptic functions|Jacobi elliptic functions]]) and Abelian functions (cf. [[Theta-function|Theta-function]]; [[Abelian function|Abelian function]]).
 
The term "theta-series" is also applied to series expansions of theta-functions, which are used in the representation of elliptic functions (cf. [[Jacobi elliptic functions|Jacobi elliptic functions]]) and Abelian functions (cf. [[Theta-function|Theta-function]]; [[Abelian function|Abelian function]]).
Line 33: Line 105:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.R. Ford, "Automorphic functions" , Chelsea, reprint (1951) {{MR|1522111}} {{ZBL|55.0810.04}} {{ZBL|46.0621.01}} {{ZBL|45.0693.07}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R. Fricke, F. Klein, "Vorlesungen über die Theorie der automorphen Funktionen" , '''1–2''' , Teubner (1926) {{MR|0183872}} {{ZBL|32.0430.01}} {{ZBL|43.0529.08}} {{ZBL|42.0452.01}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.R. Ford, "Automorphic functions" , Chelsea, reprint (1951) {{MR|1522111}} {{ZBL|55.0810.04}} {{ZBL|46.0621.01}} {{ZBL|45.0693.07}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R. Fricke, F. Klein, "Vorlesungen über die Theorie der automorphen Funktionen" , '''1–2''' , Teubner (1926) {{MR|0183872}} {{ZBL|32.0430.01}} {{ZBL|43.0529.08}} {{ZBL|42.0452.01}} </TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261043.png" /> be a lattice. The theta-series of the lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261044.png" /> is defined by
+
Let $  \Lambda \subset  \mathbf R  ^ {n} $
 +
be a lattice. The theta-series of the lattice $  \Lambda $
 +
is defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261045.png" /></td> </tr></table>
+
$$
 +
\theta _  \Lambda  ( z )  = \
 +
\sum _ {x \in \Lambda } q ^ {( x,x) }  = \
 +
\sum _ { m= } 1 ^  \infty  N _ {m} q  ^ {m} ,\ \
 +
q = e ^ {\pi i z } ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261046.png" /> is the number of points in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261047.png" /> of squared length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261048.png" />. For instance, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261049.png" /> is the lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261050.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261051.png" /> is the number of ways of representing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261052.png" /> as a sum of four integral squares.
+
where $  N _ {m} $
 +
is the number of points in $  \Lambda $
 +
of squared length $  m $.  
 +
For instance, if $  \Lambda $
 +
is the lattice $  \mathbf Z  ^ {4} \subset  \mathbf R  ^ {4} $,  
 +
then $  N _ {m} $
 +
is the number of ways of representing $  m $
 +
as a sum of four integral squares.
  
For the lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261053.png" /> the theta-series is
+
For the lattice $  \mathbf Z \subset  \mathbf R $
 +
the theta-series is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261054.png" /></td> </tr></table>
+
$$
 +
\theta _ {\mathbf Z }  ( z)  = \
 +
\sum _ {m=- \infty } ^ { {+ }  \infty } q ^ {m  ^ {2} }  = \
 +
1 + 2q + 2q  ^ {4} + 2q  ^ {9} + 2q  ^ {16} + \dots ,
 +
$$
  
which is the Jacobi theta-function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092610/t09261055.png" />.
+
which is the Jacobi theta-function $  \theta _ {3} ( z ) $.
  
 
For more details on theta-series of lattices, including formulas and tables for many (series of) important lattices such as root lattices and the Leech lattice, and applications, cf. [[#References|[a2]]].
 
For more details on theta-series of lattices, including formulas and tables for many (series of) important lattices such as root lattices and the Leech lattice, and applications, cf. [[#References|[a2]]].

Latest revision as of 08:25, 6 June 2020


$ \theta $- series

A series of functions used in the representation of automorphic forms and functions (cf. Automorphic form; Automorphic function).

Let $ D $ be a domain in the complex space $ \mathbf C ^ {p} $, $ p \geq 1 $, and let $ \Gamma $ be the discrete group of automorphisms of $ D $. If $ \Gamma $ is finite, then any function $ H ( z) $, $ z = ( z _ {1} \dots z _ {p} ) $, meromorphic on $ D $ gives rise to an automorphic function

$$ \sum _ {\gamma \in \Gamma } H ( \gamma ( z)). $$

For infinite groups one needs convergence multipliers to obtain a theta-series. A Poincaré series, associated to a group $ \Gamma $, is a series of the form

$$ \tag{1 } \theta _ {m} ( z) = \ \sum _ {\gamma \in \Gamma } {} ^ {*} J _ \gamma ^ {m} ( z) H ( \gamma ( z)), $$

where $ J _ \gamma ( z) = d \gamma ( z)/dz $ is the Jacobian of the function $ z \mapsto \gamma ( z) $ and $ m $ is an integer called the weight or the order. The asterisk means that summation is over those $ \gamma \in \Gamma $ which yield distinct terms in the series. Under a mapping $ z \mapsto \alpha ( z) $, $ \alpha \in \Gamma $, the function $ \theta _ {m} ( z) $ is transformed according to the law $ \theta _ {m} ( \alpha ( z)) = J _ \alpha ^ {-} m ( z) \theta _ {m} ( z) $, and hence is an automorphic function of weight $ m $, associated to $ \Gamma $. The quotient of two theta-series of the same weight gives an automorphic function.

The theta-series

$$ E _ {m} ( z) = \ \sum _ {\gamma \in \Gamma } {} ^ {*} J _ \gamma ^ {m} ( z) $$

is called an Eisenstein theta-series, or simply an Eisenstein series, associated with $ \Gamma $.

H. Poincaré, in a series of articles in the 1880's, developed the theory of theta-series in connection with the study of automorphic functions of one complex variable. Let $ \Gamma $ be a discrete Fuchsian group of fractional-linear transformations

$$ \gamma ( z) = \ \frac{az + b }{cz + d } ,\ \ ad - bc = 1, $$

mapping the unit disc $ D = \{ {z } : {| z | < 1 } \} $ onto itself. For this case the Poincaré series has the form

$$ \tag{2 } \theta _ {m} ( z) = \ \sum _ {\gamma \in \Gamma } {} ^ {*} ( cz + d) ^ {-} 2m H \left ( \frac{az + b }{cz + d } \right ) , $$

where $ H $, for example, is a bounded holomorphic function on $ D $. Under the hypothesis that $ \Gamma $ acts freely on $ D $ and that the quotient space $ X = D/ \Gamma $ is compact, it has been shown that the series (2) converges absolutely and uniformly on $ D $ for $ m \geq 2 $. With the stated conditions on $ H $ and $ \Gamma $, this assertion holds also for the series (1) in the case where $ D $ is a bounded domain in $ \mathbf C ^ {p} $. For certain Fuchsian groups the series (2) converges also for $ m = 1 $.

The term "theta-series" is also applied to series expansions of theta-functions, which are used in the representation of elliptic functions (cf. Jacobi elliptic functions) and Abelian functions (cf. Theta-function; Abelian function).

References

[1] L.R. Ford, "Automorphic functions" , Chelsea, reprint (1951) MR1522111 Zbl 55.0810.04 Zbl 46.0621.01 Zbl 45.0693.07
[2] I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001
[3] R. Fricke, F. Klein, "Vorlesungen über die Theorie der automorphen Funktionen" , 1–2 , Teubner (1926) MR0183872 Zbl 32.0430.01 Zbl 43.0529.08 Zbl 42.0452.01

Comments

Let $ \Lambda \subset \mathbf R ^ {n} $ be a lattice. The theta-series of the lattice $ \Lambda $ is defined by

$$ \theta _ \Lambda ( z ) = \ \sum _ {x \in \Lambda } q ^ {( x,x) } = \ \sum _ { m= } 1 ^ \infty N _ {m} q ^ {m} ,\ \ q = e ^ {\pi i z } , $$

where $ N _ {m} $ is the number of points in $ \Lambda $ of squared length $ m $. For instance, if $ \Lambda $ is the lattice $ \mathbf Z ^ {4} \subset \mathbf R ^ {4} $, then $ N _ {m} $ is the number of ways of representing $ m $ as a sum of four integral squares.

For the lattice $ \mathbf Z \subset \mathbf R $ the theta-series is

$$ \theta _ {\mathbf Z } ( z) = \ \sum _ {m=- \infty } ^ { {+ } \infty } q ^ {m ^ {2} } = \ 1 + 2q + 2q ^ {4} + 2q ^ {9} + 2q ^ {16} + \dots , $$

which is the Jacobi theta-function $ \theta _ {3} ( z ) $.

For more details on theta-series of lattices, including formulas and tables for many (series of) important lattices such as root lattices and the Leech lattice, and applications, cf. [a2].

References

[a1] A. Weil, "Elliptic functions according to Eisenstein and Kronecker" , Springer (1976) MR0562289 MR0562290 Zbl 0318.33004
[a2] J.H. Conway, N.J.A. Sloane, "Sphere packing, lattices and groups" , Springer (1988) MR0920369
How to Cite This Entry:
Theta-series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Theta-series&oldid=48964
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article