Difference between revisions of "Tensor bundle"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | t0923702.png | ||
+ | $#A+1 = 32 n = 0 | ||
+ | $#C+1 = 32 : ~/encyclopedia/old_files/data/T092/T.0902370 Tensor bundle | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''of type $ ( p, q) $ | |
+ | on a differentiable manifold $ M $'' | ||
− | + | The [[Vector bundle|vector bundle]] $ T ^ {p,q} ( M) $ | |
+ | over $ M $ | ||
+ | associated with the bundle of tangent frames and having as standard fibre the space $ T ^ {p,q} ( \mathbf R ^ {n} ) $ | ||
+ | of tensors (cf. [[Tensor on a vector space|Tensor on a vector space]]) of type $ ( p, q) $ | ||
+ | on $ \mathbf R ^ {n} $, | ||
+ | on which the group $ \mathop{\rm GL} ( n, \mathbf R ) $ | ||
+ | acts by the tensor representation. For instance, $ T ^ {1,0} ( M) $ | ||
+ | coincides with the [[Tangent bundle|tangent bundle]] $ T M $ | ||
+ | over $ M $, | ||
+ | while $ T ^ {0,1} ( M) $ | ||
+ | coincides with the cotangent bundle $ T ^ {*} M $. | ||
+ | In the general case, the tensor bundle is isomorphic to the tensor product of the tangent and cotangent bundles: | ||
− | + | $$ | |
+ | T ^ {p,q} ( M) \cong \otimes ^ { p } TM \otimes \otimes ^ { q } T ^ {*} M . | ||
+ | $$ | ||
− | where | + | Sections of the tensor bundle of type $ ( p, q) $ |
+ | are called tensor fields of type $ ( p, q) $ | ||
+ | and are the basic object of study in differential geometry. For example, a Riemannian structure on $ M $ | ||
+ | is a smooth section of the bundle $ T ^ {0,2} ( M) $ | ||
+ | the values of which are positive-definite symmetric forms. The smooth sections of the bundle $ T ^ {p,q} ( M) $ | ||
+ | form a module $ D ^ {p,q} ( M) $ | ||
+ | over the algebra $ F ^ { \infty } ( M) = D ^ {0,0} ( M) $ | ||
+ | of smooth functions on $ M $. | ||
+ | If $ M $ | ||
+ | is a paracompact Hausdorff manifold, then | ||
+ | |||
+ | $$ | ||
+ | D ^ {p,q} ( M) \cong \ | ||
+ | \otimes ^ { p } D ^ {1} ( M) \otimes | ||
+ | \otimes ^ { q } D ^ {1} ( M) ^ {*} , | ||
+ | $$ | ||
+ | |||
+ | where $ D ^ {1} ( M) = D ^ {1,0} ( M) $ | ||
+ | is the module of smooth vector fields, $ D ^ {1} ( M) ^ {*} = D ^ {0,1} ( M) $ | ||
+ | is the module of Pfaffian differential forms (cf. also [[Pfaffian form|Pfaffian form]]), and the tensor products are taken over $ F ^ { \infty } ( M) $. | ||
+ | In classical differential geometry tensor fields are sometimes simply called tensors on $ M $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''1''' , Interscience (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''1''' , Interscience (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The space | + | The space $ D ^ {1} ( M) $ |
+ | of vector fields is often denoted by $ X( M) $, | ||
+ | and $ D ^ {1} ( M) ^ {*} $, | ||
+ | the space of Pfaffian forms, by $ \Omega ^ {1} ( M) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German)</TD></TR></table> |
Latest revision as of 08:25, 6 June 2020
of type $ ( p, q) $
on a differentiable manifold $ M $
The vector bundle $ T ^ {p,q} ( M) $ over $ M $ associated with the bundle of tangent frames and having as standard fibre the space $ T ^ {p,q} ( \mathbf R ^ {n} ) $ of tensors (cf. Tensor on a vector space) of type $ ( p, q) $ on $ \mathbf R ^ {n} $, on which the group $ \mathop{\rm GL} ( n, \mathbf R ) $ acts by the tensor representation. For instance, $ T ^ {1,0} ( M) $ coincides with the tangent bundle $ T M $ over $ M $, while $ T ^ {0,1} ( M) $ coincides with the cotangent bundle $ T ^ {*} M $. In the general case, the tensor bundle is isomorphic to the tensor product of the tangent and cotangent bundles:
$$ T ^ {p,q} ( M) \cong \otimes ^ { p } TM \otimes \otimes ^ { q } T ^ {*} M . $$
Sections of the tensor bundle of type $ ( p, q) $ are called tensor fields of type $ ( p, q) $ and are the basic object of study in differential geometry. For example, a Riemannian structure on $ M $ is a smooth section of the bundle $ T ^ {0,2} ( M) $ the values of which are positive-definite symmetric forms. The smooth sections of the bundle $ T ^ {p,q} ( M) $ form a module $ D ^ {p,q} ( M) $ over the algebra $ F ^ { \infty } ( M) = D ^ {0,0} ( M) $ of smooth functions on $ M $. If $ M $ is a paracompact Hausdorff manifold, then
$$ D ^ {p,q} ( M) \cong \ \otimes ^ { p } D ^ {1} ( M) \otimes \otimes ^ { q } D ^ {1} ( M) ^ {*} , $$
where $ D ^ {1} ( M) = D ^ {1,0} ( M) $ is the module of smooth vector fields, $ D ^ {1} ( M) ^ {*} = D ^ {0,1} ( M) $ is the module of Pfaffian differential forms (cf. also Pfaffian form), and the tensor products are taken over $ F ^ { \infty } ( M) $. In classical differential geometry tensor fields are sometimes simply called tensors on $ M $.
References
[1] | S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 1 , Interscience (1963) |
[2] | S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) |
Comments
The space $ D ^ {1} ( M) $ of vector fields is often denoted by $ X( M) $, and $ D ^ {1} ( M) ^ {*} $, the space of Pfaffian forms, by $ \Omega ^ {1} ( M) $.
References
[a1] | W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German) |
Tensor bundle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tensor_bundle&oldid=48955