Difference between revisions of "System of common representatives"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | s0919501.png | ||
| + | $#A+1 = 22 n = 0 | ||
| + | $#C+1 = 22 : ~/encyclopedia/old_files/data/S091/S.0901950 System of common representatives, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''system of simultaneous representatives'' | ''system of simultaneous representatives'' | ||
| − | A set | + | A set $ R $ |
| + | of cardinality $ m $ | ||
| + | which is a [[System of different representatives|system of different representatives]] for each of the $ t $ | ||
| + | families of subsets $ {\mathcal F} _ {1} \dots {\mathcal F} _ {t} $ | ||
| + | of a given set $ S $, | ||
| + | each of which consists of $ m $ | ||
| + | elements. Suppose that $ t = 2 $, | ||
| + | that $ m $ | ||
| + | is finite, let $ {\mathcal F} _ {1} = \{ F _ {1} ^ { \prime } \dots F _ {m} ^ { \prime } \} $, | ||
| + | $ {\mathcal F} _ {2} = \{ F _ {1} ^ { \prime\prime } \dots F _ {m} ^ { \prime\prime } \} $, | ||
| + | and let $ S = \cup _ {i = 1 } ^ {m} F _ {i} ^ { \prime } = \cup _ {i = 1 } ^ {m} F _ {i} ^ { \prime\prime } $. | ||
| + | A system of common representatives for $ {\mathcal F} _ {1} $ | ||
| + | and $ {\mathcal F} _ {2} $ | ||
| + | exists if and only if no $ k $ | ||
| + | sets of the family $ {\mathcal F} _ {1} $ | ||
| + | are contained in fewer than $ k $ | ||
| + | sets of $ {\mathcal F} _ {2} $, | ||
| + | for each $ k = 1 \dots m $. | ||
| + | This theorem is valid also for infinite $ m $, | ||
| + | provided all the subsets in the families $ {\mathcal F} _ {1} $ | ||
| + | and $ {\mathcal F} _ {2} $ | ||
| + | are finite. Conditions for the existence of a system of common representatives are known for $ t > 2 $, | ||
| + | but are more complicated to formulate. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Hall, "Combinatorial theory" , Wiley (1986)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Hall, "Combinatorial theory" , Wiley (1986)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H.J. Ryser, "Combinatorial mathematics" , Math. Assoc. Amer. (1963)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L. Mirsky, "Transversal theory" , Acad. Press (1971)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Aigner, "Combinatorial theory" , Springer (1979) pp. Chapt. II (Translated from German)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H.J. Ryser, "Combinatorial mathematics" , Math. Assoc. Amer. (1963)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L. Mirsky, "Transversal theory" , Acad. Press (1971)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Aigner, "Combinatorial theory" , Springer (1979) pp. Chapt. II (Translated from German)</TD></TR></table> | ||
Latest revision as of 08:24, 6 June 2020
system of simultaneous representatives
A set $ R $ of cardinality $ m $ which is a system of different representatives for each of the $ t $ families of subsets $ {\mathcal F} _ {1} \dots {\mathcal F} _ {t} $ of a given set $ S $, each of which consists of $ m $ elements. Suppose that $ t = 2 $, that $ m $ is finite, let $ {\mathcal F} _ {1} = \{ F _ {1} ^ { \prime } \dots F _ {m} ^ { \prime } \} $, $ {\mathcal F} _ {2} = \{ F _ {1} ^ { \prime\prime } \dots F _ {m} ^ { \prime\prime } \} $, and let $ S = \cup _ {i = 1 } ^ {m} F _ {i} ^ { \prime } = \cup _ {i = 1 } ^ {m} F _ {i} ^ { \prime\prime } $. A system of common representatives for $ {\mathcal F} _ {1} $ and $ {\mathcal F} _ {2} $ exists if and only if no $ k $ sets of the family $ {\mathcal F} _ {1} $ are contained in fewer than $ k $ sets of $ {\mathcal F} _ {2} $, for each $ k = 1 \dots m $. This theorem is valid also for infinite $ m $, provided all the subsets in the families $ {\mathcal F} _ {1} $ and $ {\mathcal F} _ {2} $ are finite. Conditions for the existence of a system of common representatives are known for $ t > 2 $, but are more complicated to formulate.
References
| [1] | M. Hall, "Combinatorial theory" , Wiley (1986) |
Comments
References
| [a1] | H.J. Ryser, "Combinatorial mathematics" , Math. Assoc. Amer. (1963) |
| [a2] | L. Mirsky, "Transversal theory" , Acad. Press (1971) |
| [a3] | M. Aigner, "Combinatorial theory" , Springer (1979) pp. Chapt. II (Translated from German) |
System of common representatives. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=System_of_common_representatives&oldid=48942