Difference between revisions of "Symmetric domain"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0916501.png | ||
+ | $#A+1 = 38 n = 1 | ||
+ | $#C+1 = 38 : ~/encyclopedia/old_files/data/S091/S.0901650 Symmetric domain | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | A [[Complex manifold|complex manifold]] $ D $ | ||
+ | isomorphic to a bounded domain in $ \mathbf C ^ {n} $ | ||
+ | and such that, for every point $ p \in D $, | ||
+ | there is an involutory holomorphic transformation $ \sigma _ {p} : D \rightarrow D $ | ||
+ | with $ p $ | ||
+ | as unique fixed point. A symmetric domain is a [[Hermitian symmetric space|Hermitian symmetric space]] of negative curvature with respect to the Bergman metric (cf. [[Bergman kernel function|Bergman kernel function]]). Its automorphism group is contained, as a complex manifold, in the group of motions and has the same connected component $ G ( D) $, | ||
+ | which is a non-compact real semi-simple Lie group without centre. The stationary subgroup $ H ( D) $ | ||
+ | of $ p \in D $ | ||
+ | in $ G ( D) $ | ||
+ | is a connected compact Lie group with one-dimensional centre. As a real manifold, a symmetric domain is diffeomorphic to $ \mathbf R ^ {2 n } $. | ||
+ | |||
+ | Every symmetric domain is uniquely decomposable as a direct product of irreducible symmetric domains, and these are listed in the following table (where $ M _ {p,q} $ | ||
+ | denotes the space of complex $ ( p \times q) $- | ||
+ | matrices).<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1">Cartan type</td> <td colname="2" style="background-color:white;" colspan="1">Type of $ G( D) $ | ||
+ | </td> <td colname="3" style="background-color:white;" colspan="1">Type of $ H( D) ^ \prime $ | ||
+ | </td> <td colname="4" style="background-color:white;" colspan="1"> $ \mathop{\rm dim} D $ | ||
+ | </td> <td colname="5" style="background-color:white;" colspan="1">Model of $ D $ | ||
+ | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1">I</td> <td colname="2" style="background-color:white;" colspan="1"> $ A _ {p + q - 1 } $ | ||
+ | </td> <td colname="3" style="background-color:white;" colspan="1"> $ \begin{array}{c} | ||
+ | A _ {p - 1 } + A _ {q - 1 } \\ | ||
+ | ( p \geq q) | ||
+ | \end{array} | ||
+ | $ | ||
+ | </td> <td colname="4" style="background-color:white;" colspan="1"> $ pq $ | ||
+ | </td> <td colname="5" style="background-color:white;" colspan="1"> $ \{ {Z\in M _ {p,q} } : {Z ^ {*} Z < E } \} $ | ||
+ | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1">II</td> <td colname="2" style="background-color:white;" colspan="1"> $ D _ {p} $ | ||
+ | </td> <td colname="3" style="background-color:white;" colspan="1"> $ A _ {p - 1 } $ | ||
+ | </td> <td colname="4" style="background-color:white;" colspan="1"> $ { | ||
+ | \frac{p ( p - 1) }{2} | ||
+ | } $ | ||
+ | </td> <td colname="5" style="background-color:white;" colspan="1"> $ \{ {Z \in M _ {p,p} } : {Z ^ {t} =- Z, Z ^ {*} Z < E } \} $ | ||
+ | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1">III</td> <td colname="2" style="background-color:white;" colspan="1"> $ C _ {p} $ | ||
+ | </td> <td colname="3" style="background-color:white;" colspan="1"> $ A _ {p - 1 } $ | ||
+ | </td> <td colname="4" style="background-color:white;" colspan="1"> $ { | ||
+ | \frac{p ( p + 1) }{2} | ||
+ | } $ | ||
+ | </td> <td colname="5" style="background-color:white;" colspan="1"> $ \{ {Z \in M _ {p,p} } : {Z ^ {t} = Z, Z ^ {*} Z < E } \} $ | ||
+ | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1">IV</td> <td colname="2" style="background-color:white;" colspan="1"> $ \begin{array}{c} | ||
+ | D _ {p/2 + 1 } \\ | ||
+ | B _ {( p + 1)/2 } | ||
+ | \end{array} | ||
+ | $ | ||
+ | </td> <td colname="3" style="background-color:white;" colspan="1"> $ \begin{array}{c} | ||
+ | D _ {p/2 - 1 } \\ | ||
+ | B _ {( p - 1)/2 } | ||
+ | \end{array} | ||
+ | $ | ||
+ | </td> <td colname="4" style="background-color:white;" colspan="1"> $ p $ | ||
+ | </td> <td colname="5" style="background-color:white;" colspan="1"> $ \{ {z \in \mathbf C ^ {p} } : { \sum | z _ {i} | ^ {2} < { | ||
+ | \frac{1}{2} | ||
+ | } \left ( 1 + \left | \sum z _ {i} ^ {2} \right | ^ {2} \right ) < 1 } \} $ | ||
+ | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1">V</td> <td colname="2" style="background-color:white;" colspan="1"> $ E _ {6} $ | ||
+ | </td> <td colname="3" style="background-color:white;" colspan="1"> $ D _ {5} $ | ||
+ | </td> <td colname="4" style="background-color:white;" colspan="1">16</td> <td colname="5" style="background-color:white;" colspan="1"></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1">VI</td> <td colname="2" style="background-color:white;" colspan="1"> $ E _ {7} $ | ||
+ | </td> <td colname="3" style="background-color:white;" colspan="1"> $ E _ {6} $ | ||
+ | </td> <td colname="4" style="background-color:white;" colspan="1">27</td> <td colname="5" style="background-color:white;" colspan="1"></td> </tr> </tbody> </table> | ||
</td></tr> </table> | </td></tr> </table> | ||
Line 7: | Line 72: | ||
A symmetric domain of type III can be represented as the Siegel upper half-plane: | A symmetric domain of type III can be represented as the Siegel upper half-plane: | ||
− | + | $$ | |
+ | \{ Z \in M _ {p,p} : Z ^ {t} = Z, \mathop{\rm Im} Z > 0 \} . | ||
+ | $$ | ||
Its points parametrize principally polarized Abelian varieties. The other symmetric domains can also be represented as Siegel domains (cf. [[Siegel domain|Siegel domain]]) of the first or second kind (see [[#References|[2]]]). | Its points parametrize principally polarized Abelian varieties. The other symmetric domains can also be represented as Siegel domains (cf. [[Siegel domain|Siegel domain]]) of the first or second kind (see [[#References|[2]]]). | ||
Line 13: | Line 80: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C.L. Siegel, "Automorphe Funktionen in mehrerer Variablen" , Math. Inst. Göttingen (1955)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.I. [I.I. Pyatetskii-Shapiro] Piatetski-Shapiro, "Automorphic functions and the geometry of classical domains" , Gordon & Breach (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Cartan, "Domains bornés homogènes de l'espace de <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091650/s09165038.png" /> variables complexes" ''Abh. Math. Sem. Univ. Hamburg'' , '''1''' (1935) pp. 116–162</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> D. Drucker, "Exceptional Lie algebras and the structure of hermitian symmetric spaces" , Amer. Math. Soc. (1978)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C.L. Siegel, "Automorphe Funktionen in mehrerer Variablen" , Math. Inst. Göttingen (1955)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.I. [I.I. Pyatetskii-Shapiro] Piatetski-Shapiro, "Automorphic functions and the geometry of classical domains" , Gordon & Breach (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Cartan, "Domains bornés homogènes de l'espace de <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091650/s09165038.png" /> variables complexes" ''Abh. Math. Sem. Univ. Hamburg'' , '''1''' (1935) pp. 116–162</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> D. Drucker, "Exceptional Lie algebras and the structure of hermitian symmetric spaces" , Amer. Math. Soc. (1978)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The stationary subgroup | + | The stationary subgroup $ H( D) $ |
+ | has one-dimensional centre if and only if the symmetric domain is irreducible. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) pp. Chapt. X</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) pp. Chapt. X</TD></TR></table> |
Latest revision as of 08:24, 6 June 2020
A complex manifold $ D $
isomorphic to a bounded domain in $ \mathbf C ^ {n} $
and such that, for every point $ p \in D $,
there is an involutory holomorphic transformation $ \sigma _ {p} : D \rightarrow D $
with $ p $
as unique fixed point. A symmetric domain is a Hermitian symmetric space of negative curvature with respect to the Bergman metric (cf. Bergman kernel function). Its automorphism group is contained, as a complex manifold, in the group of motions and has the same connected component $ G ( D) $,
which is a non-compact real semi-simple Lie group without centre. The stationary subgroup $ H ( D) $
of $ p \in D $
in $ G ( D) $
is a connected compact Lie group with one-dimensional centre. As a real manifold, a symmetric domain is diffeomorphic to $ \mathbf R ^ {2 n } $.
Every symmetric domain is uniquely decomposable as a direct product of irreducible symmetric domains, and these are listed in the following table (where $ M _ {p,q} $ denotes the space of complex $ ( p \times q) $-
matrices).
<tbody> </tbody>
|
A symmetric domain of type III can be represented as the Siegel upper half-plane:
$$ \{ Z \in M _ {p,p} : Z ^ {t} = Z, \mathop{\rm Im} Z > 0 \} . $$
Its points parametrize principally polarized Abelian varieties. The other symmetric domains can also be represented as Siegel domains (cf. Siegel domain) of the first or second kind (see [2]).
References
[1] | C.L. Siegel, "Automorphe Funktionen in mehrerer Variablen" , Math. Inst. Göttingen (1955) |
[2] | I.I. [I.I. Pyatetskii-Shapiro] Piatetski-Shapiro, "Automorphic functions and the geometry of classical domains" , Gordon & Breach (1969) (Translated from Russian) |
[3] | E. Cartan, "Domains bornés homogènes de l'espace de variables complexes" Abh. Math. Sem. Univ. Hamburg , 1 (1935) pp. 116–162 |
[4] | D. Drucker, "Exceptional Lie algebras and the structure of hermitian symmetric spaces" , Amer. Math. Soc. (1978) |
Comments
The stationary subgroup $ H( D) $ has one-dimensional centre if and only if the symmetric domain is irreducible.
References
[a1] | S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) pp. Chapt. X |
Symmetric domain. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Symmetric_domain&oldid=48925