Difference between revisions of "Symmetric difference of order n"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | s0916302.png | ||
| + | $#A+1 = 11 n = 0 | ||
| + | $#C+1 = 11 : ~/encyclopedia/old_files/data/S091/S.0901630 Symmetric difference of order \BMI n\EMI | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
| + | ''at a point $ x $ | ||
| + | of a function $ f $ | ||
| + | of a real variable'' | ||
The expression | The expression | ||
| − | + | $$ | |
| + | \Delta _ {s} ^ {n} f ( x, h) = \ | ||
| + | \sum _ {k = 0 } ^ { n } | ||
| + | \left ( \begin{array}{c} | ||
| + | n \\ | ||
| + | k | ||
| + | \end{array} | ||
| + | \right ) (- 1) ^ {k} | ||
| + | f \left ( x + { | ||
| + | \frac{n - 2k }{2} | ||
| + | } h \right ) . | ||
| + | $$ | ||
The following expression is often also referred to as a symmetric difference: | The following expression is often also referred to as a symmetric difference: | ||
| − | + | $$ | |
| − | + | \sum _ {k = 0 } ^ { n } | |
| − | + | \left ( \begin{array}{c} | |
| − | + | n \\ | |
| − | + | k | |
| + | \end{array} | ||
| + | \right ) (- 1) ^ {k} | ||
| + | f ( x + ( n - 2k) h). | ||
| + | $$ | ||
| + | It is obtained from the above by substituting $ 2h $ | ||
| + | for $ h $. | ||
| + | If $ f ( x) $ | ||
| + | has an $ n $- | ||
| + | th order derivative $ f ^ { ( n) } ( x) $ | ||
| + | at $ x $, | ||
| + | then | ||
| + | $$ | ||
| + | \Delta _ {s} ^ {n} f ( x, h) = \ | ||
| + | f ^ { ( n) } ( x) h ^ {n} + o ( h ^ {n} ). | ||
| + | $$ | ||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Meschkowski, "Differenzengleichungen" , Vandenhoeck & Ruprecht (1959)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L.N. Milne-Thomson, "The calculus of finite differences" , Chelsea, reprint (1981)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> N.E. Nörlund, "Volesungen über Differenzenrechnung" , Chelsea, reprint (1954)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Meschkowski, "Differenzengleichungen" , Vandenhoeck & Ruprecht (1959)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L.N. Milne-Thomson, "The calculus of finite differences" , Chelsea, reprint (1981)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> N.E. Nörlund, "Volesungen über Differenzenrechnung" , Chelsea, reprint (1954)</TD></TR></table> | ||
Latest revision as of 08:24, 6 June 2020
at a point $ x $
of a function $ f $
of a real variable
The expression
$$ \Delta _ {s} ^ {n} f ( x, h) = \ \sum _ {k = 0 } ^ { n } \left ( \begin{array}{c} n \\ k \end{array} \right ) (- 1) ^ {k} f \left ( x + { \frac{n - 2k }{2} } h \right ) . $$
The following expression is often also referred to as a symmetric difference:
$$ \sum _ {k = 0 } ^ { n } \left ( \begin{array}{c} n \\ k \end{array} \right ) (- 1) ^ {k} f ( x + ( n - 2k) h). $$
It is obtained from the above by substituting $ 2h $ for $ h $. If $ f ( x) $ has an $ n $- th order derivative $ f ^ { ( n) } ( x) $ at $ x $, then
$$ \Delta _ {s} ^ {n} f ( x, h) = \ f ^ { ( n) } ( x) h ^ {n} + o ( h ^ {n} ). $$
Comments
References
| [a1] | H. Meschkowski, "Differenzengleichungen" , Vandenhoeck & Ruprecht (1959) |
| [a2] | L.N. Milne-Thomson, "The calculus of finite differences" , Chelsea, reprint (1981) |
| [a3] | N.E. Nörlund, "Volesungen über Differenzenrechnung" , Chelsea, reprint (1954) |
Symmetric difference of order n. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Symmetric_difference_of_order_n&oldid=48924