Difference between revisions of "Symmetric derived number"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0916201.png | ||
+ | $#A+1 = 22 n = 0 | ||
+ | $#C+1 = 22 : ~/encyclopedia/old_files/data/S091/S.0901620 Symmetric derived number | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''at a point $ x $'' | |
− | + | A generalization of the ordinary notion of a derived number (cf. [[Dini derivative|Dini derivative]]) to the case of a set function $ \Phi $ | |
+ | on an $ n $- | ||
+ | dimensional Euclidean space. The symmetric derived numbers of $ \Phi $ | ||
+ | at $ x $ | ||
+ | are defined as the limits | ||
− | + | $$ | |
+ | \lim\limits _ {k \rightarrow \infty } \ | ||
− | + | \frac{\Phi ( S ( x, r _ {k} )) }{| S ( x, r _ {k} ) | } | |
+ | , | ||
+ | $$ | ||
− | + | where $ S ( x, r _ {k} ) $ | |
+ | is some sequence of closed balls with centres at $ x $ | ||
+ | and radii $ r _ {k} $ | ||
+ | such that $ r _ {k} \rightarrow 0 $ | ||
+ | as $ k \rightarrow \infty $. | ||
− | + | The $ n $- | |
+ | th symmetric derived numbers at $ x $ | ||
+ | of a function $ f $ | ||
+ | of a real variable are defined as the limits | ||
+ | |||
+ | $$ | ||
+ | \lim\limits _ {k \rightarrow \infty } \ | ||
+ | |||
+ | \frac{\Delta _ {s} ^ {n} f ( x, h _ {k} ) }{h _ {k} ^ {n} } | ||
+ | = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = \ | ||
+ | \lim\limits _ {k \rightarrow \infty } | ||
+ | \frac{\sum _ {m = 0 } ^ { n } \left ( \begin{array}{c} | ||
+ | n \\ | ||
+ | m | ||
+ | \end{array} | ||
+ | \right ) (- 1) ^ {m} f \left | ||
+ | ( x + { | ||
+ | \frac{n - 2m }{2} | ||
+ | } h _ {k} \right ) }{h _ {k} ^ {n} } | ||
+ | , | ||
+ | $$ | ||
+ | |||
+ | where $ h _ {k} \rightarrow 0 $ | ||
+ | as $ k \rightarrow \infty $ | ||
+ | and $ \Delta _ {s} ^ {n} f ( x, h _ {k} ) $ | ||
+ | is the [[Symmetric difference of order n|symmetric difference of order $ n $]] | ||
+ | of $ f $ | ||
+ | at $ x $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1937) (Translated from French)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1937) (Translated from French)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Rudin, "Real and complex analysis" , McGraw-Hill (1974) pp. 24</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Rudin, "Real and complex analysis" , McGraw-Hill (1974) pp. 24</TD></TR></table> |
Latest revision as of 08:24, 6 June 2020
at a point $ x $
A generalization of the ordinary notion of a derived number (cf. Dini derivative) to the case of a set function $ \Phi $ on an $ n $- dimensional Euclidean space. The symmetric derived numbers of $ \Phi $ at $ x $ are defined as the limits
$$ \lim\limits _ {k \rightarrow \infty } \ \frac{\Phi ( S ( x, r _ {k} )) }{| S ( x, r _ {k} ) | } , $$
where $ S ( x, r _ {k} ) $ is some sequence of closed balls with centres at $ x $ and radii $ r _ {k} $ such that $ r _ {k} \rightarrow 0 $ as $ k \rightarrow \infty $.
The $ n $- th symmetric derived numbers at $ x $ of a function $ f $ of a real variable are defined as the limits
$$ \lim\limits _ {k \rightarrow \infty } \ \frac{\Delta _ {s} ^ {n} f ( x, h _ {k} ) }{h _ {k} ^ {n} } = $$
$$ = \ \lim\limits _ {k \rightarrow \infty } \frac{\sum _ {m = 0 } ^ { n } \left ( \begin{array}{c} n \\ m \end{array} \right ) (- 1) ^ {m} f \left ( x + { \frac{n - 2m }{2} } h _ {k} \right ) }{h _ {k} ^ {n} } , $$
where $ h _ {k} \rightarrow 0 $ as $ k \rightarrow \infty $ and $ \Delta _ {s} ^ {n} f ( x, h _ {k} ) $ is the symmetric difference of order $ n $ of $ f $ at $ x $.
References
[1] | S. Saks, "Theory of the integral" , Hafner (1937) (Translated from French) |
Comments
References
[a1] | W. Rudin, "Real and complex analysis" , McGraw-Hill (1974) pp. 24 |
Symmetric derived number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Symmetric_derived_number&oldid=48923