Difference between revisions of "Support function"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0912701.png | ||
+ | $#A+1 = 18 n = 0 | ||
+ | $#C+1 = 18 : ~/encyclopedia/old_files/data/S091/S.0901270 Support function, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''support functional, of a set $ A $ | |
+ | in a real vector space $ X $'' | ||
+ | |||
+ | The function $ sA $ | ||
+ | on the vector space $ Y $ | ||
+ | dual to $ X $, | ||
+ | defined by the relation | ||
+ | |||
+ | $$ | ||
+ | ( sA)( y) = \sup _ {y \in A } \langle x, y\rangle. | ||
+ | $$ | ||
For example, the support function of the unit sphere in a normed space considered in duality with its conjugate space is the norm in the latter. | For example, the support function of the unit sphere in a normed space considered in duality with its conjugate space is the norm in the latter. | ||
− | A support function is always convex, closed and positively homogeneous (of the first order). The operator | + | A support function is always convex, closed and positively homogeneous (of the first order). The operator $ s: A \rightarrow sA $ |
+ | is a one-to-one mapping from the family of closed convex sets in $ X $ | ||
+ | onto the family of closed convex homogeneous functions; the inverse operator is the [[Subdifferential|subdifferential]] (at zero) of the support function. Indeed, if $ A $ | ||
+ | is a closed convex subset in $ X $, | ||
+ | then $ \partial ( sA) = A $; | ||
+ | and if $ p $ | ||
+ | is a closed convex homogeneous function on $ Y $, | ||
+ | then $ s( \partial p( 0)) = p $. | ||
+ | These two relations (resulting from the Fenchel–Moreau theorem, see [[Conjugate function|Conjugate function]]) also express the duality between closed convex sets and closed convex homogeneous functions. | ||
− | Examples of relations linking the operator | + | Examples of relations linking the operator $ s $ |
+ | with algebraic and set-theoretic operations are: | ||
− | + | $$ | |
+ | s( \lambda C) = \lambda sC, \lambda > 0; \ \ | ||
+ | s( A _ {1} + A _ {2} ) = sA _ {1} + sA _ {2} ; | ||
+ | $$ | ||
− | + | $$ | |
+ | s( \mathop{\rm conv} ( A _ {1} \cup A _ {2} ))( x) = \max ( sA _ {1} ( x), sA _ {2} ( x)). | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R.T. Rockafellar, "Convex analysis" , Princeton Univ. Press (1970)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Minkowski, "Geometrie der Zahlen" , Chelsea, reprint (1953)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> H. Minkowski, "Gesammelte Abhandlungen" , '''2''' , Teubner (1911)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> W. Fenchel, "On conjugate convex functions" ''Canad. J. Math.'' , '''1''' (1949) pp. 73–77</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> W. Fenchel, "Convex cones, sets and functions" , Princeton Univ. Press (1953)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> L. Hörmander, "Sur la fonction d'appui des ensembles convexes dans un espace localement convexe" ''Ark. Mat.'' , '''3''' (1955) pp. 181–186</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R.T. Rockafellar, "Convex analysis" , Princeton Univ. Press (1970)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Minkowski, "Geometrie der Zahlen" , Chelsea, reprint (1953)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> H. Minkowski, "Gesammelte Abhandlungen" , '''2''' , Teubner (1911)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> W. Fenchel, "On conjugate convex functions" ''Canad. J. Math.'' , '''1''' (1949) pp. 73–77</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> W. Fenchel, "Convex cones, sets and functions" , Princeton Univ. Press (1953)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> L. Hörmander, "Sur la fonction d'appui des ensembles convexes dans un espace localement convexe" ''Ark. Mat.'' , '''3''' (1955) pp. 181–186</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Support functions play an important role in functional analysis and in other applications of convexity, e.g. optimization and geometry of numbers. | Support functions play an important role in functional analysis and in other applications of convexity, e.g. optimization and geometry of numbers. | ||
− | Support functions of closed convex domains in | + | Support functions of closed convex domains in $ \mathbf R ^ {2n} $ |
+ | find application in the study of growth (and zero distribution) of entire functions, cf. e.g. [[Borel transform|Borel transform]]; [[Entire function|Entire function]]; [[Growth indicatrix|Growth indicatrix]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.M. Gruber, C.G. Lekkerkerker, "Geometry of numbers" , North-Holland (1987) pp. Sect. (iv) (Updated reprint)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Schneider, "Boundary structure and curvature of convex bodies" J. Tölke (ed.) J.M. Wills (ed.) , ''Contributions to geometry'' , Birkhäuser (1979) pp. 13–59</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.M. Gruber, C.G. Lekkerkerker, "Geometry of numbers" , North-Holland (1987) pp. Sect. (iv) (Updated reprint)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Schneider, "Boundary structure and curvature of convex bodies" J. Tölke (ed.) J.M. Wills (ed.) , ''Contributions to geometry'' , Birkhäuser (1979) pp. 13–59</TD></TR></table> |
Latest revision as of 08:24, 6 June 2020
support functional, of a set $ A $
in a real vector space $ X $
The function $ sA $ on the vector space $ Y $ dual to $ X $, defined by the relation
$$ ( sA)( y) = \sup _ {y \in A } \langle x, y\rangle. $$
For example, the support function of the unit sphere in a normed space considered in duality with its conjugate space is the norm in the latter.
A support function is always convex, closed and positively homogeneous (of the first order). The operator $ s: A \rightarrow sA $ is a one-to-one mapping from the family of closed convex sets in $ X $ onto the family of closed convex homogeneous functions; the inverse operator is the subdifferential (at zero) of the support function. Indeed, if $ A $ is a closed convex subset in $ X $, then $ \partial ( sA) = A $; and if $ p $ is a closed convex homogeneous function on $ Y $, then $ s( \partial p( 0)) = p $. These two relations (resulting from the Fenchel–Moreau theorem, see Conjugate function) also express the duality between closed convex sets and closed convex homogeneous functions.
Examples of relations linking the operator $ s $ with algebraic and set-theoretic operations are:
$$ s( \lambda C) = \lambda sC, \lambda > 0; \ \ s( A _ {1} + A _ {2} ) = sA _ {1} + sA _ {2} ; $$
$$ s( \mathop{\rm conv} ( A _ {1} \cup A _ {2} ))( x) = \max ( sA _ {1} ( x), sA _ {2} ( x)). $$
References
[1] | R.T. Rockafellar, "Convex analysis" , Princeton Univ. Press (1970) |
[2] | H. Minkowski, "Geometrie der Zahlen" , Chelsea, reprint (1953) |
[3] | H. Minkowski, "Gesammelte Abhandlungen" , 2 , Teubner (1911) |
[4] | W. Fenchel, "On conjugate convex functions" Canad. J. Math. , 1 (1949) pp. 73–77 |
[5] | W. Fenchel, "Convex cones, sets and functions" , Princeton Univ. Press (1953) |
[6] | L. Hörmander, "Sur la fonction d'appui des ensembles convexes dans un espace localement convexe" Ark. Mat. , 3 (1955) pp. 181–186 |
Comments
Support functions play an important role in functional analysis and in other applications of convexity, e.g. optimization and geometry of numbers.
Support functions of closed convex domains in $ \mathbf R ^ {2n} $ find application in the study of growth (and zero distribution) of entire functions, cf. e.g. Borel transform; Entire function; Growth indicatrix.
References
[a1] | P.M. Gruber, C.G. Lekkerkerker, "Geometry of numbers" , North-Holland (1987) pp. Sect. (iv) (Updated reprint) |
[a2] | R. Schneider, "Boundary structure and curvature of convex bodies" J. Tölke (ed.) J.M. Wills (ed.) , Contributions to geometry , Birkhäuser (1979) pp. 13–59 |
Support function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Support_function&oldid=48913