Difference between revisions of "Supergraph"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0912201.png | ||
+ | $#A+1 = 22 n = 0 | ||
+ | $#C+1 = 22 : ~/encyclopedia/old_files/data/S091/S.0901220 Supergraph | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''of a function'' | |
− | + | Let $ f: X \rightarrow \overline{\mathbf R}\; $ | |
+ | be a function defined on some set $ X $ | ||
+ | with values in the extended real line $ \overline{\mathbf R}\; = \mathbf R \cup \{ - \infty \} \cup \{ + \infty \} $. | ||
+ | Then the supergraph of $ f $ | ||
+ | is the subset of the Cartesian product $ X \times \mathbf R $ | ||
+ | consisting of all points $ ( x, \alpha ) $ | ||
+ | lying "above" the graph of $ f $. | ||
+ | The supergraph is sometimes called the epigraph and is denoted by $ \mathop{\rm epi} f $: | ||
− | + | $$ | |
+ | \mathop{\rm epi} f = \ | ||
+ | \{ {( x, \alpha ) \in X \times \mathbf R } : {\alpha \geq f ( x) } \} | ||
+ | . | ||
+ | $$ | ||
− | The | + | The projection of the supergraph onto $ X $ |
+ | is known as the effective domain of $ f $, | ||
+ | denoted by $ \mathop{\rm dom} f $: | ||
− | + | $$ | |
+ | \mathop{\rm dom} f = \{ {x \in X } : {f ( x) < + \infty } \} | ||
+ | . | ||
+ | $$ | ||
− | + | The function $ f $ | |
+ | is said to be proper if | ||
+ | $$ | ||
+ | f ( x) > - \infty , \forall x,\ \textrm{ and } \ \ | ||
+ | \mathop{\rm dom} f \neq \emptyset . | ||
+ | $$ | ||
+ | A function $ f: X \rightarrow \mathbf R $ | ||
+ | defined on a real vector space $ X $ | ||
+ | is convex if and only if $ \mathop{\rm epi} f $ | ||
+ | is a convex subset of $ X \times \mathbf R $. | ||
+ | A function $ f: X \rightarrow \overline{\mathbf R}\; $ | ||
+ | defined on a topological space $ X $ | ||
+ | is upper semi-continuous if and only if $ \mathop{\rm epi} f $ | ||
+ | is a closed set. | ||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.T. Rockafellar, "Convex analysis" , Princeton Univ. Press (1970) pp. 23; 307</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.T. Rockafellar, "Convex analysis" , Princeton Univ. Press (1970) pp. 23; 307</TD></TR></table> |
Latest revision as of 08:24, 6 June 2020
of a function
Let $ f: X \rightarrow \overline{\mathbf R}\; $ be a function defined on some set $ X $ with values in the extended real line $ \overline{\mathbf R}\; = \mathbf R \cup \{ - \infty \} \cup \{ + \infty \} $. Then the supergraph of $ f $ is the subset of the Cartesian product $ X \times \mathbf R $ consisting of all points $ ( x, \alpha ) $ lying "above" the graph of $ f $. The supergraph is sometimes called the epigraph and is denoted by $ \mathop{\rm epi} f $:
$$ \mathop{\rm epi} f = \ \{ {( x, \alpha ) \in X \times \mathbf R } : {\alpha \geq f ( x) } \} . $$
The projection of the supergraph onto $ X $ is known as the effective domain of $ f $, denoted by $ \mathop{\rm dom} f $:
$$ \mathop{\rm dom} f = \{ {x \in X } : {f ( x) < + \infty } \} . $$
The function $ f $ is said to be proper if
$$ f ( x) > - \infty , \forall x,\ \textrm{ and } \ \ \mathop{\rm dom} f \neq \emptyset . $$
A function $ f: X \rightarrow \mathbf R $ defined on a real vector space $ X $ is convex if and only if $ \mathop{\rm epi} f $ is a convex subset of $ X \times \mathbf R $. A function $ f: X \rightarrow \overline{\mathbf R}\; $ defined on a topological space $ X $ is upper semi-continuous if and only if $ \mathop{\rm epi} f $ is a closed set.
Comments
References
[a1] | R.T. Rockafellar, "Convex analysis" , Princeton Univ. Press (1970) pp. 23; 307 |
Supergraph. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Supergraph&oldid=48912