Difference between revisions of "Superefficient estimator"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | s0912101.png | ||
+ | $#A+1 = 17 n = 0 | ||
+ | $#C+1 = 17 : ~/encyclopedia/old_files/data/S091/S.0901210 Superefficient estimator, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''hyperefficient estimator'' | ''hyperefficient estimator'' | ||
An abbreviation of the phrase "superefficient sequence of estimators" , used for a consistent sequence of asymptotically-normal estimators of an unknown parameter that is better (more efficient) than a consistent sequence of maximum-likelihood estimators. | An abbreviation of the phrase "superefficient sequence of estimators" , used for a consistent sequence of asymptotically-normal estimators of an unknown parameter that is better (more efficient) than a consistent sequence of maximum-likelihood estimators. | ||
− | Let | + | Let $ X _ {1} \dots X _ {n} $ |
+ | be independent identically-distributed random variables that take values in a sampling space $ ( \mathfrak X , {\mathcal B} , {\mathsf P} _ \theta ) $, | ||
+ | $ \theta \in \Theta $. | ||
+ | Suppose that the family of distributions $ \{ {\mathsf P} _ \theta \} $ | ||
+ | is such that there is a consistent sequence $ \{ \widehat \theta _ {n} \} $ | ||
+ | of maximum-likelihood estimators $ \widehat \theta _ {n} = \widehat \theta _ {n} ( X _ {1} \dots X _ {n} ) $ | ||
+ | of the parameter $ \theta $. | ||
+ | Let $ \{ T _ {n} \} $ | ||
+ | be a sequence of asymptotically-normal estimators $ T _ {n} = T _ {n} ( X _ {1} \dots X _ {n} ) $ | ||
+ | of $ \theta $. | ||
+ | If | ||
+ | |||
+ | $$ | ||
+ | \lim\limits _ {n \rightarrow \infty } \ | ||
+ | {\mathsf E} _ \theta [ n ( T _ {n} - \theta ) ^ {2} ] \leq | ||
+ | \frac{1}{I ( \theta ) } | ||
+ | |||
+ | $$ | ||
− | + | for all $ \theta \in \Theta $, | |
+ | where $ I ( \theta ) $ | ||
+ | is the [[Fisher amount of information|Fisher amount of information]], and if, in addition, the strict inequality | ||
− | + | $$ \tag{* } | |
+ | \lim\limits _ {n \rightarrow \infty } \ | ||
+ | {\mathsf E} _ {\theta ^ {*} } | ||
+ | [ n ( T _ {n} - \theta ^ {*} ) ^ {2} ] < | ||
+ | \frac{1}{I ( \theta ^ {*} ) } | ||
− | + | $$ | |
− | holds at least at one point | + | holds at least at one point $ \theta ^ {*} \in \Theta $, |
+ | then the sequence $ \{ T _ {n} \} $ | ||
+ | is called superefficient relative to the quadratic loss function, and the points $ \theta ^ {*} $ | ||
+ | at which (*) holds are called points of superefficiency. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.A. Ibragimov, R.Z. [R.Z. Khas'minskii] Has'minskii, "Statistical estimation: asymptotic theory" , Springer (1981) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Schmetterer, "Introduction to mathematical statistics" , Springer (1974) (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. le Cam, "On some asymptotic properties of maximum likelihood estimates and related Bayes estimates" ''Univ. California Publ. Stat.'' , '''1''' (1953) pp. 277–330</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.A. Ibragimov, R.Z. [R.Z. Khas'minskii] Has'minskii, "Statistical estimation: asymptotic theory" , Springer (1981) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Schmetterer, "Introduction to mathematical statistics" , Springer (1974) (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. le Cam, "On some asymptotic properties of maximum likelihood estimates and related Bayes estimates" ''Univ. California Publ. Stat.'' , '''1''' (1953) pp. 277–330</TD></TR></table> |
Latest revision as of 08:24, 6 June 2020
hyperefficient estimator
An abbreviation of the phrase "superefficient sequence of estimators" , used for a consistent sequence of asymptotically-normal estimators of an unknown parameter that is better (more efficient) than a consistent sequence of maximum-likelihood estimators.
Let $ X _ {1} \dots X _ {n} $ be independent identically-distributed random variables that take values in a sampling space $ ( \mathfrak X , {\mathcal B} , {\mathsf P} _ \theta ) $, $ \theta \in \Theta $. Suppose that the family of distributions $ \{ {\mathsf P} _ \theta \} $ is such that there is a consistent sequence $ \{ \widehat \theta _ {n} \} $ of maximum-likelihood estimators $ \widehat \theta _ {n} = \widehat \theta _ {n} ( X _ {1} \dots X _ {n} ) $ of the parameter $ \theta $. Let $ \{ T _ {n} \} $ be a sequence of asymptotically-normal estimators $ T _ {n} = T _ {n} ( X _ {1} \dots X _ {n} ) $ of $ \theta $. If
$$ \lim\limits _ {n \rightarrow \infty } \ {\mathsf E} _ \theta [ n ( T _ {n} - \theta ) ^ {2} ] \leq \frac{1}{I ( \theta ) } $$
for all $ \theta \in \Theta $, where $ I ( \theta ) $ is the Fisher amount of information, and if, in addition, the strict inequality
$$ \tag{* } \lim\limits _ {n \rightarrow \infty } \ {\mathsf E} _ {\theta ^ {*} } [ n ( T _ {n} - \theta ^ {*} ) ^ {2} ] < \frac{1}{I ( \theta ^ {*} ) } $$
holds at least at one point $ \theta ^ {*} \in \Theta $, then the sequence $ \{ T _ {n} \} $ is called superefficient relative to the quadratic loss function, and the points $ \theta ^ {*} $ at which (*) holds are called points of superefficiency.
References
[1] | I.A. Ibragimov, R.Z. [R.Z. Khas'minskii] Has'minskii, "Statistical estimation: asymptotic theory" , Springer (1981) (Translated from Russian) |
[2] | L. Schmetterer, "Introduction to mathematical statistics" , Springer (1974) (Translated from German) |
[3] | L. le Cam, "On some asymptotic properties of maximum likelihood estimates and related Bayes estimates" Univ. California Publ. Stat. , 1 (1953) pp. 277–330 |
Superefficient estimator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Superefficient_estimator&oldid=48911