|
|
| Line 1: |
Line 1: |
| − | A [[Vector space|vector space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911901.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911902.png" /> endowed with a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911903.png" />-grading <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911904.png" />. The elements of the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911905.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911906.png" /> are said to be even and odd, respectively; for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911907.png" />, the parity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911908.png" /> is defined to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911909.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119010.png" />. Each super-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119011.png" /> has associated to it another super-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119012.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119013.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119014.png" />. The pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119015.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119017.png" />, is called the dimension of the super-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119018.png" />. The field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119019.png" /> is usually considered as a super-space of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119020.png" />.
| + | <!-- |
| | + | s0911901.png |
| | + | $#A+1 = 51 n = 0 |
| | + | $#C+1 = 51 : ~/encyclopedia/old_files/data/S091/S.0901190 Super\AAhspace |
| | + | Automatically converted into TeX, above some diagnostics. |
| | + | Please remove this comment and the {{TEX|auto}} line below, |
| | + | if TeX found to be correct. |
| | + | --> |
| | | | |
| − | For two super-spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119022.png" />, the structure of a super-space on the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119025.png" />, etc., is defined naturally. In particular, a linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119026.png" /> is even if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119027.png" />, and odd if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119028.png" />. A homogeneous bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119029.png" /> is said to be symmetric if
| + | {{TEX|auto}} |
| | + | {{TEX|done}} |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119030.png" /></td> </tr></table>
| + | A [[Vector space|vector space]] $ V $ |
| | + | over a field $ k $ |
| | + | endowed with a $ \mathbf Z / 2 $- |
| | + | grading $ V = V _ {\overline{0}\; } \oplus V _ {\overline{1}\; } $. |
| | + | The elements of the spaces $ V _ {\overline{0}\; } $ |
| | + | and $ V _ {\overline{1}\; } $ |
| | + | are said to be even and odd, respectively; for $ x \in V _ {i} $, |
| | + | the parity $ p( x) $ |
| | + | is defined to be $ i $ |
| | + | $ ( i \in \mathbf Z / 2 = \{ \overline{0}\; , \overline{1}\; \} ) $. |
| | + | Each super-space $ V $ |
| | + | has associated to it another super-space $ \Pi ( V) $ |
| | + | such that $ \Pi ( V) _ {i} = V _ {i+ \overline{1}\; } $ |
| | + | $ ( i \in \mathbf Z / 2 ) $. |
| | + | The pair $ ( m, n) $, |
| | + | where $ m = \mathop{\rm dim} V _ {\overline{0}\; } $, |
| | + | $ n = \mathop{\rm dim} V _ {\overline{1}\; } $, |
| | + | is called the dimension of the super-space $ V $. |
| | + | The field $ k $ |
| | + | is usually considered as a super-space of dimension $ ( 1, 0) $. |
| | + | |
| | + | For two super-spaces $ V $ |
| | + | and $ W $, |
| | + | the structure of a super-space on the spaces $ V \oplus W $, |
| | + | $ \mathop{\rm Hom} _ {k} ( V, W) $, |
| | + | $ V ^ \star $, |
| | + | etc., is defined naturally. In particular, a linear mapping $ \phi : V \rightarrow W $ |
| | + | is even if $ \phi ( V _ {i} ) \subset W _ {i} $, |
| | + | and odd if $ \phi ( V _ {i} ) \subset W _ {i+ \overline{1}\; } $. |
| | + | A homogeneous bilinear form $ \beta : V \otimes V \mapsto k $ |
| | + | is said to be symmetric if |
| | + | |
| | + | $$ |
| | + | \beta ( y, x) = (- 1) ^ {p( x) p( y)+ p( \beta )( p( x)+ p( y)) } \beta ( x, y), |
| | + | $$ |
| | | | |
| | and skew-symmetric if | | and skew-symmetric if |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119031.png" /></td> </tr></table>
| + | $$ |
| | + | \beta ( y, x) = -(- 1) ^ {p( x) p( y)+ p( \beta )( p( x)+ p( y)) } \beta ( x, y). |
| | + | $$ |
| | | | |
| − | All these concepts apply equally to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119032.png" />-graded free modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119033.png" /> over an arbitrary commutative [[Superalgebra|superalgebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119034.png" />. The basis in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119035.png" /> is usually selected so that its first vectors are even and its last ones odd. Any endomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119036.png" /> of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119037.png" /> is denoted in this basis by a block matrix | + | All these concepts apply equally to $ \mathbf Z / 2 $- |
| | + | graded free modules $ V $ |
| | + | over an arbitrary commutative [[Superalgebra|superalgebra]] $ C $. |
| | + | The basis in $ V $ |
| | + | is usually selected so that its first vectors are even and its last ones odd. Any endomorphism $ \phi $ |
| | + | of the module $ V $ |
| | + | is denoted in this basis by a block matrix |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119038.png" /></td> </tr></table>
| + | $$ |
| | + | \alpha = \left ( |
| | | | |
| − | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119040.png" />, such that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119041.png" /> is even, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119043.png" /> consist of even elements and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119045.png" /> consist of odd elements, whereas if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119046.png" /> is odd, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119048.png" /> consist of odd elements and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119050.png" /> consist of even elements (in the former case the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119051.png" /> is even, in the latter, odd). | + | where $ X \in M _ {n} ( C) $, |
| | + | $ T \in M _ {m} ( C) $, |
| | + | such that if $ \phi $ |
| | + | is even, then $ X $ |
| | + | and $ T $ |
| | + | consist of even elements and $ Y $ |
| | + | and $ Z $ |
| | + | consist of odd elements, whereas if $ \phi $ |
| | + | is odd, then $ X $ |
| | + | and $ T $ |
| | + | consist of odd elements and $ Y $ |
| | + | and $ Z $ |
| | + | consist of even elements (in the former case the matrix $ \alpha $ |
| | + | is even, in the latter, odd). |
| | | | |
| | ====References==== | | ====References==== |
| | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> F.A. Berezin, "Introduction to superanalysis" , Reidel (1987) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D.A. Leites (ed.) , ''Seminar on super-manifolds'' , Kluwer (1990)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> F.A. Berezin, "Introduction to superanalysis" , Reidel (1987) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D.A. Leites (ed.) , ''Seminar on super-manifolds'' , Kluwer (1990)</TD></TR></table> |
| − |
| |
| − |
| |
| | | | |
| | ====Comments==== | | ====Comments==== |
| − |
| |
| | | | |
| | ====References==== | | ====References==== |
| | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.A. Berezin, M.A. Shubin, "The Schrödinger equation" , Kluwer (1991) (Translated from Russian) (Supplement 3: D.A. Leites, Quantization and supermanifolds)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.A. Berezin, M.A. Shubin, "The Schrödinger equation" , Kluwer (1991) (Translated from Russian) (Supplement 3: D.A. Leites, Quantization and supermanifolds)</TD></TR></table> |
A vector space $ V $
over a field $ k $
endowed with a $ \mathbf Z / 2 $-
grading $ V = V _ {\overline{0}\; } \oplus V _ {\overline{1}\; } $.
The elements of the spaces $ V _ {\overline{0}\; } $
and $ V _ {\overline{1}\; } $
are said to be even and odd, respectively; for $ x \in V _ {i} $,
the parity $ p( x) $
is defined to be $ i $
$ ( i \in \mathbf Z / 2 = \{ \overline{0}\; , \overline{1}\; \} ) $.
Each super-space $ V $
has associated to it another super-space $ \Pi ( V) $
such that $ \Pi ( V) _ {i} = V _ {i+ \overline{1}\; } $
$ ( i \in \mathbf Z / 2 ) $.
The pair $ ( m, n) $,
where $ m = \mathop{\rm dim} V _ {\overline{0}\; } $,
$ n = \mathop{\rm dim} V _ {\overline{1}\; } $,
is called the dimension of the super-space $ V $.
The field $ k $
is usually considered as a super-space of dimension $ ( 1, 0) $.
For two super-spaces $ V $
and $ W $,
the structure of a super-space on the spaces $ V \oplus W $,
$ \mathop{\rm Hom} _ {k} ( V, W) $,
$ V ^ \star $,
etc., is defined naturally. In particular, a linear mapping $ \phi : V \rightarrow W $
is even if $ \phi ( V _ {i} ) \subset W _ {i} $,
and odd if $ \phi ( V _ {i} ) \subset W _ {i+ \overline{1}\; } $.
A homogeneous bilinear form $ \beta : V \otimes V \mapsto k $
is said to be symmetric if
$$
\beta ( y, x) = (- 1) ^ {p( x) p( y)+ p( \beta )( p( x)+ p( y)) } \beta ( x, y),
$$
and skew-symmetric if
$$
\beta ( y, x) = -(- 1) ^ {p( x) p( y)+ p( \beta )( p( x)+ p( y)) } \beta ( x, y).
$$
All these concepts apply equally to $ \mathbf Z / 2 $-
graded free modules $ V $
over an arbitrary commutative superalgebra $ C $.
The basis in $ V $
is usually selected so that its first vectors are even and its last ones odd. Any endomorphism $ \phi $
of the module $ V $
is denoted in this basis by a block matrix
$$
\alpha = \left (
where $ X \in M _ {n} ( C) $,
$ T \in M _ {m} ( C) $,
such that if $ \phi $
is even, then $ X $
and $ T $
consist of even elements and $ Y $
and $ Z $
consist of odd elements, whereas if $ \phi $
is odd, then $ X $
and $ T $
consist of odd elements and $ Y $
and $ Z $
consist of even elements (in the former case the matrix $ \alpha $
is even, in the latter, odd).
References
| [1] | F.A. Berezin, "Introduction to superanalysis" , Reidel (1987) (Translated from Russian) |
| [2] | D.A. Leites (ed.) , Seminar on super-manifolds , Kluwer (1990) |
References
| [a1] | F.A. Berezin, M.A. Shubin, "The Schrödinger equation" , Kluwer (1991) (Translated from Russian) (Supplement 3: D.A. Leites, Quantization and supermanifolds) |