Difference between revisions of "Super-group"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | s0911701.png | ||
+ | $#A+1 = 21 n = 0 | ||
+ | $#C+1 = 21 : ~/encyclopedia/old_files/data/S091/S.0901170 Super\AAhgroup, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Lie super-group'' | ''Lie super-group'' | ||
− | A group object in the category of super-manifolds (cf. [[Super-manifold|Super-manifold]]). A super-group | + | A group object in the category of super-manifolds (cf. [[Super-manifold|Super-manifold]]). A super-group $ {\mathcal G} $ |
+ | is defined by a functor $ {\mathcal G} $ | ||
+ | from the category of commutative superalgebras into the category of groups. Lie's theorems (cf. [[Lie theorem|Lie theorem]]) are transferred to super-groups, a fact that gives the correspondence between super-groups and finite-dimensional Lie superalgebras (cf. [[Superalgebra|Superalgebra]]). | ||
===Examples.=== | ===Examples.=== | ||
+ | 1) The super-group $ \mathop{\rm GL} _ {n\mid } m $ | ||
+ | is defined by the functor $ C \mapsto \mathop{\rm GL} _ {n\mid } m ( C ) $ | ||
+ | into groups of even invertible matrices from $ M _ {n\mid } m ( C) $( | ||
+ | see [[Super-space|Super-space]]), i.e. of matrices in the form | ||
− | + | $$ | |
− | + | \left ( | |
− | |||
− | where | + | where $ X, T $ |
+ | are invertible matrices of orders $ n, m $ | ||
+ | over $ C _ {\overline{0}\; } $, | ||
+ | while $ Y, Z $ | ||
+ | are matrices over $ C _ {\overline{1}\; } $. | ||
+ | A homomorphism $ \mathop{\rm GL} _ {n\mid } m ( C) \rightarrow C _ {\overline{0}\; } ^ \star $ | ||
+ | is defined by the formula | ||
− | + | $$ | |
+ | \mathop{\rm Ber} \left ( | ||
(the Berezinian); | (the Berezinian); | ||
− | 2) | + | 2) $ \mathop{\rm SL} _ {n\mid } m = \mathop{\rm Ker} \mathop{\rm Ber} $; |
− | 3) | + | 3) $ \mathop{\rm OSp} _ {n\mid } 2m \subset \mathop{\rm GL} _ {n\mid } 2m $ |
+ | and $ \Pi _ {n} \subset \mathop{\rm GL} _ {n\mid } m $; | ||
+ | they leave invariant an even, or odd, non-degenerate symmetric bilinear form. | ||
− | To every super-group | + | To every super-group $ {\mathcal G} $ |
+ | and super-subgroup $ {\mathcal H} $ | ||
+ | of it there is related a super-manifold $ {\mathcal G} / {\mathcal H} $, | ||
+ | represented by a functor $ C \mapsto {\mathcal G} ( C) / {\mathcal H} ( C) $. | ||
+ | This super-manifold is a homogeneous space of $ {\mathcal G} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.I. Manin, "Gauge fields and complex geometry" , Springer (1988) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> F.A. Berezin, "Introduction to superanalysis" , Reidel (1987) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D.A. Leites (ed.) , ''Seminar on supermanifolds'' , Kluwer (1990)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.I. Manin, "Gauge fields and complex geometry" , Springer (1988) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> F.A. Berezin, "Introduction to superanalysis" , Reidel (1987) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D.A. Leites (ed.) , ''Seminar on supermanifolds'' , Kluwer (1990)</TD></TR></table> |
Revision as of 08:24, 6 June 2020
Lie super-group
A group object in the category of super-manifolds (cf. Super-manifold). A super-group $ {\mathcal G} $ is defined by a functor $ {\mathcal G} $ from the category of commutative superalgebras into the category of groups. Lie's theorems (cf. Lie theorem) are transferred to super-groups, a fact that gives the correspondence between super-groups and finite-dimensional Lie superalgebras (cf. Superalgebra).
Examples.
1) The super-group $ \mathop{\rm GL} _ {n\mid } m $ is defined by the functor $ C \mapsto \mathop{\rm GL} _ {n\mid } m ( C ) $ into groups of even invertible matrices from $ M _ {n\mid } m ( C) $( see Super-space), i.e. of matrices in the form
$$ \left ( where $ X, T $ are invertible matrices of orders $ n, m $ over $ C _ {\overline{0}\; } $, while $ Y, Z $ are matrices over $ C _ {\overline{1}\; } $. A homomorphism $ \mathop{\rm GL} _ {n\mid } m ( C) \rightarrow C _ {\overline{0}\; } ^ \star $ is defined by the formula $$
\mathop{\rm Ber} \left (
(the Berezinian);
2) $ \mathop{\rm SL} _ {n\mid } m = \mathop{\rm Ker} \mathop{\rm Ber} $;
3) $ \mathop{\rm OSp} _ {n\mid } 2m \subset \mathop{\rm GL} _ {n\mid } 2m $ and $ \Pi _ {n} \subset \mathop{\rm GL} _ {n\mid } m $; they leave invariant an even, or odd, non-degenerate symmetric bilinear form.
To every super-group $ {\mathcal G} $ and super-subgroup $ {\mathcal H} $ of it there is related a super-manifold $ {\mathcal G} / {\mathcal H} $, represented by a functor $ C \mapsto {\mathcal G} ( C) / {\mathcal H} ( C) $. This super-manifold is a homogeneous space of $ {\mathcal G} $.
References
[1] | Yu.I. Manin, "Gauge fields and complex geometry" , Springer (1988) (Translated from Russian) |
[2] | F.A. Berezin, "Introduction to superanalysis" , Reidel (1987) (Translated from Russian) |
[3] | D.A. Leites (ed.) , Seminar on supermanifolds , Kluwer (1990) |
Super-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Super-group&oldid=48908