Namespaces
Variants
Actions

Difference between revisions of "Stochastic process, renewable"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
s0902301.png
 +
$#A+1 = 40 n = 0
 +
$#C+1 = 40 : ~/encyclopedia/old_files/data/S090/S.0900230 Stochastic process, renewable,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''innovation stochastic process''
 
''innovation stochastic process''
  
 
A [[Stochastic process|stochastic process]] with a fairly  "simple"  structure, constructed from an input process and containing all necessary information about this process. Innovation stochastic processes have been used in the problem of linear prediction of stationary time series, in non-linear problems of statistics of stochastic processes, and elsewhere (see [[#References|[1]]]–[[#References|[3]]]).
 
A [[Stochastic process|stochastic process]] with a fairly  "simple"  structure, constructed from an input process and containing all necessary information about this process. Innovation stochastic processes have been used in the problem of linear prediction of stationary time series, in non-linear problems of statistics of stochastic processes, and elsewhere (see [[#References|[1]]]–[[#References|[3]]]).
  
The concept of an innovation stochastic process can be introduced into the theory of linear and non-linear stochastic processes in various ways. In the linear theory (see [[#References|[4]]]), a vector stochastic process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s0902301.png" /> is called an innovation process for a stochastic process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s0902302.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s0902303.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s0902304.png" /> has non-correlated components with non-correlated increments and if
+
The concept of an innovation stochastic process can be introduced into the theory of linear and non-linear stochastic processes in various ways. In the linear theory (see [[#References|[4]]]), a vector stochastic process $  x _ {t} $
 +
is called an innovation process for a stochastic process $  \xi _ {t} $
 +
with $  {\mathsf E} | \xi _ {t} |  ^ {2} < \infty $
 +
if $  x _ {t} $
 +
has non-correlated components with non-correlated increments and if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s0902305.png" /></td> </tr></table>
+
$$
 +
H _ {t} ( \xi )  = H _ {t} ( x) \  \textrm{ for  all  }  t ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s0902306.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s0902307.png" /> are the mean-square closed linear hulls of all the values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s0902308.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s0902309.png" />) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023010.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023011.png" />), respectively (in a suitable space of functions on the probability space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023012.png" />). The number of components <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023013.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023014.png" />) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023015.png" /> is called the multiplicity of the innovation process, and is uniquely determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023016.png" />. In the case of one-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023017.png" /> in discrete time, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023018.png" />, and in the case of continuous time <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023019.png" /> only under certain special assumptions about the correlation function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023020.png" /> (see [[#References|[4]]], [[#References|[5]]]). In applications one may take advantage of the fact that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023021.png" /> can be represented as a linear functional of the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023023.png" />.
+
where $  H _ {t} ( \xi ) $
 +
and $  H _ {t} ( x) $
 +
are the mean-square closed linear hulls of all the values $  \xi _ {s} $(
 +
s \leq  t $)  
 +
and $  x _ {s} $(
 +
s \leq  t $),  
 +
respectively (in a suitable space of functions on the probability space $  \Omega $).  
 +
The number of components $  N $(
 +
$  N \leq  \infty $)  
 +
of $  x _ {t} $
 +
is called the multiplicity of the innovation process, and is uniquely determined by $  \xi _ {t} $.  
 +
In the case of one-dimensional $  \xi _ {t} $
 +
in discrete time, $  N = 1 $,  
 +
and in the case of continuous time $  N < \infty $
 +
only under certain special assumptions about the correlation function of $  \xi _ {t} $(
 +
see [[#References|[4]]], [[#References|[5]]]). In applications one may take advantage of the fact that $  \xi _ {t} $
 +
can be represented as a linear functional of the values of $  x _ {s} $,  
 +
s \leq  t $.
  
In the non-linear theory (see [[#References|[5]]], [[#References|[6]]]), the term innovation stochastic process usually refers to a [[Wiener process|Wiener process]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023024.png" /> such that
+
In the non-linear theory (see [[#References|[5]]], [[#References|[6]]]), the term innovation stochastic process usually refers to a [[Wiener process|Wiener process]] $  x _ {t} $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023025.png" /></td> </tr></table>
+
$$
 +
{\mathcal F} _ {t}  ^  \xi  = {\mathcal F} _ {t}  ^ {x} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023027.png" /> are the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023028.png" />-algebras of events generated by the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023031.png" />, respectively. In the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023032.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023033.png" />) is an [[Itô process|Itô process]] with stochastic differential
+
where $  {\mathcal F} _ {t}  ^  \xi  $,  
 +
$  {\mathcal F} _ {t}  ^ {x} $
 +
are the $  \sigma $-
 +
algebras of events generated by the values of $  \xi _ {s} $,  
 +
$  x _ {s} $,  
 +
s \leq  t $,  
 +
respectively. In the case when $  \xi _ {t} $(
 +
0 \leq  t \leq  T $)  
 +
is an [[Itô process|Itô process]] with stochastic differential
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023034.png" /></td> </tr></table>
+
$$
 +
d \xi _ {t}  = a ( t)  d t + d w _ {t} ,
 +
$$
  
the Wiener process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023035.png" /> defined by
+
the Wiener process $  \overline{w}\; _ {t} $
 +
defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023036.png" /></td> </tr></table>
+
$$
 +
\overline{w}\; _ {t}  = \xi _ {t} -
 +
\int\limits _ { 0 } ^ { t }  {\mathsf E} ( a ( s) \mid  {\mathcal F} _ {s}  ^  \xi  )  d s
 +
$$
  
is an innovation stochastic process for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023037.png" />, for example, when
+
is an innovation stochastic process for $  \xi _ {t} $,  
 +
for example, when
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023038.png" /></td> </tr></table>
+
$$
 +
{\mathsf E} \int\limits _ { 0 } ^ { T }  a  ^ {2} ( s)  d s  < \infty
 +
$$
  
and the processes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023040.png" /> form a Gaussian system (see [[#References|[6]]]).
+
and the processes $  a $
 +
and $  w $
 +
form a Gaussian system (see [[#References|[6]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.N. Kolmogorov,  "Interpolation and extrapolation of stationary random sequences"  ''Rand Coorp. Memorandum'' , '''RM-3090-PR'''  (April 1962)  ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''5'''  (1941)  pp. 3–14</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.N. Shiryaev,  "Stochastic equations of nonlinear filtering of Markovian jumps"  ''Probl. of Inform. Transmission'' , '''2''' :  3  (1966)  pp. 1–18  ''Probl. Pered. Inform.'' , '''2''' :  3  (1966)  pp. 3–22</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  T. Kailath,  "A view of three decades of linear filtering theory"  ''IEEE Trans. Inform. Theory'' , '''20''' :  2  (1974)  pp. 146–181</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  Yu.A. Rozanov,  "Innovation processes" , Wiley  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A.N. Shiryaev,  "Reduction of data with saving of information and innovation processes" , ''Trans. School-Seminar Theory of Stochastic Processes (Druskininka, 1974)'' , '''2''' , Vilnius  (1975)  pp. 235–267  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  R.S. Liptser,  A.N. Shiryaev,  "Statistics of stochastic processes" , '''1''' , Springer  (1977)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.N. Kolmogorov,  "Interpolation and extrapolation of stationary random sequences"  ''Rand Coorp. Memorandum'' , '''RM-3090-PR'''  (April 1962)  ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''5'''  (1941)  pp. 3–14</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.N. Shiryaev,  "Stochastic equations of nonlinear filtering of Markovian jumps"  ''Probl. of Inform. Transmission'' , '''2''' :  3  (1966)  pp. 1–18  ''Probl. Pered. Inform.'' , '''2''' :  3  (1966)  pp. 3–22</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  T. Kailath,  "A view of three decades of linear filtering theory"  ''IEEE Trans. Inform. Theory'' , '''20''' :  2  (1974)  pp. 146–181</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  Yu.A. Rozanov,  "Innovation processes" , Wiley  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A.N. Shiryaev,  "Reduction of data with saving of information and innovation processes" , ''Trans. School-Seminar Theory of Stochastic Processes (Druskininka, 1974)'' , '''2''' , Vilnius  (1975)  pp. 235–267  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  R.S. Liptser,  A.N. Shiryaev,  "Statistics of stochastic processes" , '''1''' , Springer  (1977)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  Yu.A. Rozanov,  "Innovation processes" , Winston  (1977)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  Yu.A. Rozanov,  "Innovation processes" , Winston  (1977)  (Translated from Russian)</TD></TR></table>

Latest revision as of 08:23, 6 June 2020


innovation stochastic process

A stochastic process with a fairly "simple" structure, constructed from an input process and containing all necessary information about this process. Innovation stochastic processes have been used in the problem of linear prediction of stationary time series, in non-linear problems of statistics of stochastic processes, and elsewhere (see [1][3]).

The concept of an innovation stochastic process can be introduced into the theory of linear and non-linear stochastic processes in various ways. In the linear theory (see [4]), a vector stochastic process $ x _ {t} $ is called an innovation process for a stochastic process $ \xi _ {t} $ with $ {\mathsf E} | \xi _ {t} | ^ {2} < \infty $ if $ x _ {t} $ has non-correlated components with non-correlated increments and if

$$ H _ {t} ( \xi ) = H _ {t} ( x) \ \textrm{ for all } t , $$

where $ H _ {t} ( \xi ) $ and $ H _ {t} ( x) $ are the mean-square closed linear hulls of all the values $ \xi _ {s} $( $ s \leq t $) and $ x _ {s} $( $ s \leq t $), respectively (in a suitable space of functions on the probability space $ \Omega $). The number of components $ N $( $ N \leq \infty $) of $ x _ {t} $ is called the multiplicity of the innovation process, and is uniquely determined by $ \xi _ {t} $. In the case of one-dimensional $ \xi _ {t} $ in discrete time, $ N = 1 $, and in the case of continuous time $ N < \infty $ only under certain special assumptions about the correlation function of $ \xi _ {t} $( see [4], [5]). In applications one may take advantage of the fact that $ \xi _ {t} $ can be represented as a linear functional of the values of $ x _ {s} $, $ s \leq t $.

In the non-linear theory (see [5], [6]), the term innovation stochastic process usually refers to a Wiener process $ x _ {t} $ such that

$$ {\mathcal F} _ {t} ^ \xi = {\mathcal F} _ {t} ^ {x} , $$

where $ {\mathcal F} _ {t} ^ \xi $, $ {\mathcal F} _ {t} ^ {x} $ are the $ \sigma $- algebras of events generated by the values of $ \xi _ {s} $, $ x _ {s} $, $ s \leq t $, respectively. In the case when $ \xi _ {t} $( $ 0 \leq t \leq T $) is an Itô process with stochastic differential

$$ d \xi _ {t} = a ( t) d t + d w _ {t} , $$

the Wiener process $ \overline{w}\; _ {t} $ defined by

$$ \overline{w}\; _ {t} = \xi _ {t} - \int\limits _ { 0 } ^ { t } {\mathsf E} ( a ( s) \mid {\mathcal F} _ {s} ^ \xi ) d s $$

is an innovation stochastic process for $ \xi _ {t} $, for example, when

$$ {\mathsf E} \int\limits _ { 0 } ^ { T } a ^ {2} ( s) d s < \infty $$

and the processes $ a $ and $ w $ form a Gaussian system (see [6]).

References

[1] A.N. Kolmogorov, "Interpolation and extrapolation of stationary random sequences" Rand Coorp. Memorandum , RM-3090-PR (April 1962) Izv. Akad. Nauk. SSSR Ser. Mat. , 5 (1941) pp. 3–14
[2] A.N. Shiryaev, "Stochastic equations of nonlinear filtering of Markovian jumps" Probl. of Inform. Transmission , 2 : 3 (1966) pp. 1–18 Probl. Pered. Inform. , 2 : 3 (1966) pp. 3–22
[3] T. Kailath, "A view of three decades of linear filtering theory" IEEE Trans. Inform. Theory , 20 : 2 (1974) pp. 146–181
[4] Yu.A. Rozanov, "Innovation processes" , Wiley (1977) (Translated from Russian)
[5] A.N. Shiryaev, "Reduction of data with saving of information and innovation processes" , Trans. School-Seminar Theory of Stochastic Processes (Druskininka, 1974) , 2 , Vilnius (1975) pp. 235–267 (In Russian)
[6] R.S. Liptser, A.N. Shiryaev, "Statistics of stochastic processes" , 1 , Springer (1977) (Translated from Russian)

Comments

References

[a1] Yu.A. Rozanov, "Innovation processes" , Winston (1977) (Translated from Russian)
How to Cite This Entry:
Stochastic process, renewable. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stochastic_process,_renewable&oldid=48859
This article was adapted from an original article by A.A. Novikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article