Difference between revisions of "Stochastic interval"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | s0901401.png | ||
| + | $#A+1 = 10 n = 0 | ||
| + | $#C+1 = 10 : ~/encyclopedia/old_files/data/S090/S.0900140 Stochastic interval | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
One of the intervals: | One of the intervals: | ||
| − | + | $$ | |
| + | \left [ \left [ \sigma , \tau \right ] \right ] = \ | ||
| + | \{ {( \omega , t) } : {t \geq 0, \sigma ( \omega ) \leq t | ||
| + | \leq \tau ( \omega ) } \} , | ||
| + | $$ | ||
| − | + | $$ | |
| + | \left [ \left [ \sigma , \tau \right [ \right [ = \ | ||
| + | \{ {( \omega , t) } : {t \geq 0,\ | ||
| + | \sigma ( \omega ) \leq t < \tau ( \omega ) } \} , | ||
| + | $$ | ||
| − | + | $$ | |
| + | \left ] \left ] \sigma , \tau \right ] \right ] = \ | ||
| + | \{ {( \omega , t) } : {t \geq 0,\ | ||
| + | \sigma ( \omega ) < t \leq \tau ( \omega ) } \} , | ||
| + | $$ | ||
| − | + | $$ | |
| + | \left ] \left ] \sigma , \tau \right [ \right [ = \ | ||
| + | \{ {( \omega , t) } : {t \geq 0,\ | ||
| + | \sigma ( \omega ) < t < \tau ( \omega ) } \} , | ||
| + | $$ | ||
| − | where | + | where $ \sigma = \sigma ( \omega ) $ |
| + | and $ \tau = \tau ( \omega ) $ | ||
| + | are two stopping times defined on a measurable space $ ( \Omega , {\mathcal F}) $ | ||
| + | with an increasing family $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t\geq } 0 $ | ||
| + | of sub- $ \sigma $- | ||
| + | algebras $ {\mathcal F} _ {t} \subseteq {\mathcal F} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Dellacherie, "Capacités et processus stochastiques" , Springer (1972)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Dellacherie, "Capacités et processus stochastiques" , Springer (1972)</TD></TR></table> | ||
Latest revision as of 08:23, 6 June 2020
One of the intervals:
$$ \left [ \left [ \sigma , \tau \right ] \right ] = \ \{ {( \omega , t) } : {t \geq 0, \sigma ( \omega ) \leq t \leq \tau ( \omega ) } \} , $$
$$ \left [ \left [ \sigma , \tau \right [ \right [ = \ \{ {( \omega , t) } : {t \geq 0,\ \sigma ( \omega ) \leq t < \tau ( \omega ) } \} , $$
$$ \left ] \left ] \sigma , \tau \right ] \right ] = \ \{ {( \omega , t) } : {t \geq 0,\ \sigma ( \omega ) < t \leq \tau ( \omega ) } \} , $$
$$ \left ] \left ] \sigma , \tau \right [ \right [ = \ \{ {( \omega , t) } : {t \geq 0,\ \sigma ( \omega ) < t < \tau ( \omega ) } \} , $$
where $ \sigma = \sigma ( \omega ) $ and $ \tau = \tau ( \omega ) $ are two stopping times defined on a measurable space $ ( \Omega , {\mathcal F}) $ with an increasing family $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t\geq } 0 $ of sub- $ \sigma $- algebras $ {\mathcal F} _ {t} \subseteq {\mathcal F} $.
References
| [1] | C. Dellacherie, "Capacités et processus stochastiques" , Springer (1972) |
Stochastic interval. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stochastic_interval&oldid=48852