Namespaces
Variants
Actions

Difference between revisions of "Stochastic basis"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A complete probability space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090020/s0900201.png" /> with an increasing family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090020/s0900202.png" /> of sub-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090020/s0900203.png" />-algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090020/s0900204.png" />, which satisfies the (so-called usual) conditions:
+
<!--
 +
s0900201.png
 +
$#A+1 = 13 n = 0
 +
$#C+1 = 13 : ~/encyclopedia/old_files/data/S090/S.0900020 Stochastic basis
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
1) it must be continuous from the right, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090020/s0900205.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090020/s0900206.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090020/s0900207.png" />;
+
{{TEX|auto}}
 +
{{TEX|done}}
  
2) it must be complete, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090020/s0900208.png" /> contains all subsets from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090020/s0900209.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090020/s09002010.png" />-measure zero.
+
A complete probability space  $  ( \Omega , {\mathcal F} , {\mathsf P}) $
 +
with an increasing family  $  \mathbf F = ( {\mathcal F} _ {t} ) _ {t \geq  0 }  $
 +
of sub- $  \sigma $-
 +
algebras  $  {\mathcal F} _ {t} \subseteq {\mathcal F} $,
 +
which satisfies the (so-called usual) conditions:
  
For stochastic bases, the notations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090020/s09002011.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090020/s09002012.png" /> are also used.
+
1) it must be continuous from the right, $  {\mathcal F} _ {t} = {\mathcal F} _ {t  ^ {+}  } $(
 +
= \cap _ {s>} t {\mathcal F} _ {s} $),
 +
$  t \geq  0 $;
  
 +
2) it must be complete, i.e.  $  {\mathcal F} _ {t} $
 +
contains all subsets from  $  {\mathcal F} $
 +
of  $  {\mathsf P} $-
 +
measure zero.
  
 +
For stochastic bases, the notations  $  ( \Omega , {\mathcal F}, \mathbf F , {\mathsf P}) $
 +
or  $  ( \Omega , {\mathcal F} , ( {\mathcal F} _ {t} ) _ {t \geq  0 }  , {\mathsf P}) $
 +
are also used.
  
 
====Comments====
 
====Comments====
An increasing family of (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090020/s09002013.png" />-) algebras is usually called a filtration.
+
An increasing family of ( $  \sigma $-)  
 +
algebras is usually called a filtration.

Latest revision as of 08:23, 6 June 2020


A complete probability space $ ( \Omega , {\mathcal F} , {\mathsf P}) $ with an increasing family $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t \geq 0 } $ of sub- $ \sigma $- algebras $ {\mathcal F} _ {t} \subseteq {\mathcal F} $, which satisfies the (so-called usual) conditions:

1) it must be continuous from the right, $ {\mathcal F} _ {t} = {\mathcal F} _ {t ^ {+} } $( $ = \cap _ {s>} t {\mathcal F} _ {s} $), $ t \geq 0 $;

2) it must be complete, i.e. $ {\mathcal F} _ {t} $ contains all subsets from $ {\mathcal F} $ of $ {\mathsf P} $- measure zero.

For stochastic bases, the notations $ ( \Omega , {\mathcal F}, \mathbf F , {\mathsf P}) $ or $ ( \Omega , {\mathcal F} , ( {\mathcal F} _ {t} ) _ {t \geq 0 } , {\mathsf P}) $ are also used.

Comments

An increasing family of ( $ \sigma $-) algebras is usually called a filtration.

How to Cite This Entry:
Stochastic basis. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stochastic_basis&oldid=48845
This article was adapted from an original article by A.N. Shiryaev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article