Namespaces
Variants
Actions

Difference between revisions of "Stieltjes integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A generalization of the concept of the [[Riemann integral|Riemann integral]], realizing the notion of integrating a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s0878001.png" /> with respect to another function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s0878002.png" />. Let two functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s0878003.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s0878004.png" /> be defined and bounded on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s0878005.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s0878006.png" />. A sum of the form
+
<!--
 +
s0878001.png
 +
$#A+1 = 92 n = 0
 +
$#C+1 = 92 : ~/encyclopedia/old_files/data/S087/S.0807800 Stieltjes integral
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s0878007.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s0878008.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s0878009.png" />, is called a Stieltjes integral sum. A number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780010.png" /> is called the limit of the integral sums (1) when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780011.png" /> if for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780012.png" /> there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780013.png" /> such that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780014.png" />, the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780015.png" /> holds. If the limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780016.png" /> exists when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780017.png" /> and is finite, then the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780018.png" /> is said to be integrable with respect to the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780019.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780020.png" />, and the limit is called the Stieltjes integral (or the Riemann–Stieltjes integral) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780021.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780022.png" />, and is denoted by
+
A generalization of the concept of the [[Riemann integral|Riemann integral]], realizing the notion of integrating a function $  f $
 +
with respect to another function $  u $.  
 +
Let two functions  $  f $
 +
and  $  u $
 +
be defined and bounded on  $  [ a, b] $
 +
and let  $  a = x _ {0} < \dots < x _ {n} = b $.  
 +
A sum of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780023.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{1 }
 +
\sigma  = f( \xi _ {1} ) [ u( x _ {1} ) - u( x _ {0} )] + \dots
 +
+ f( \xi _ {n} )[ u( x _ {n} ) - u( x _ {n-} 1 )],
 +
$$
  
the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780024.png" /> is said to be the integrating function. Th.J. Stieltjes [[#References|[1]]] hit upon the idea of such an integral when studying the positive "distribution of masses" on a straight line defined by an increasing function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780025.png" />, the points of discontinuity of which correspond to masses that are "concentrated at one point" .
+
where  $  x _ {i-} 1 \leq  \xi _ {i} \leq  x _ {i} $,
 +
$  i = 1 \dots n $,
 +
is called a Stieltjes integral sum. A number  $  I $
 +
is called the limit of the integral sums (1) when  $  \max _ {i}  \Delta x _ {i} \rightarrow 0 $
 +
if for each  $  \epsilon > 0 $
 +
there is a  $  \delta > 0 $
 +
such that if  $  \max  \Delta x _ {i} < \delta $,
 +
the inequality  $  | \sigma - I | < \epsilon $
 +
holds. If the limit  $  I $
 +
exists when  $  \max _ {i}  \Delta x _ {i} \rightarrow 0 $
 +
and is finite, then the function  $  f $
 +
is said to be integrable with respect to the function $  u $
 +
over  $  [ a, b] $,
 +
and the limit is called the Stieltjes integral (or the Riemann–Stieltjes integral) of $ f $
 +
with respect to  $  u $,
 +
and is denoted by
  
The Riemann integral is a particular case of the Stieltjes integral, when a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780026.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780027.png" />, is taken as the integrating function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780028.png" />.
+
$$ \tag{2 }
 +
I  =  \int\limits _ { a } ^ { b }  f( x)  du( x);
 +
$$
  
When the integrating function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780029.png" /> increases monotonically, the upper and lower Darboux–Stieltjes sums are studied:
+
the function  $  u $
 +
is said to be the integrating function. Th.J. Stieltjes [[#References|[1]]] hit upon the idea of such an integral when studying the positive  "distribution of masses" on a straight line defined by an increasing function  $  u $,  
 +
the points of discontinuity of which correspond to masses that are "concentrated at one point" .
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780030.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
The Riemann integral is a particular case of the Stieltjes integral, when a function  $  x+ C $,
 +
where  $  C = \textrm{ const } $,
 +
is taken as the integrating function  $  u $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780031.png" /></td> </tr></table>
+
When the integrating function  $  u $
 +
increases monotonically, the upper and lower Darboux–Stieltjes sums are studied:
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780033.png" /> are the greatest lower and least upper bounds of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780034.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780035.png" />.
+
$$ \tag{3 }
 +
= \sum _ { i= } 1 ^ { n }  M _ {i} [ u( x _ {i} ) - u( x _ {i-} 1 )],
 +
$$
 +
 
 +
$$
 +
s = \sum _ { i= } 1 ^ { n }  m _ {i} [ u( x _ {i} ) - u( x _ {i-} 1 )],
 +
$$
 +
 
 +
where  $  m _ {i} $
 +
and  $  M _ {i} $
 +
are the greatest lower and least upper bounds of $  f $
 +
on $  [ x _ {i-} 1 , x _ {i} ] $.
  
 
For a Stieltjes integral to exists, it is sufficient for one of the following conditions to be fulfilled:
 
For a Stieltjes integral to exists, it is sufficient for one of the following conditions to be fulfilled:
  
1) the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780036.png" /> is continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780037.png" />, while the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780038.png" /> is of bounded variation on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780039.png" />;
+
1) the function $  f $
 +
is continuous on $  [ a, b] $,
 +
while the function $  u $
 +
is of bounded variation on $  [ a, b] $;
  
2) the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780040.png" /> is Riemann integrable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780041.png" />, while the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780042.png" /> satisfies a Lipschitz condition on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780043.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780044.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780045.png" />, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780047.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780048.png" />;
+
2) the function $  f $
 +
is Riemann integrable on $  [ a, b] $,  
 +
while the function $  u $
 +
satisfies a Lipschitz condition on $  [ a, b] $,  
 +
i.e. $  | u( x _ {1} ) - u( x _ {2} ) | \leq  C  | x _ {1} - x _ {2} | $,  
 +
where $  C = \textrm{ const } $,  
 +
for any $  x _ {1} $
 +
and $  x _ {2} $
 +
from $  [ a, b] $;
  
3) the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780049.png" /> is Riemann integrable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780050.png" />, while the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780051.png" /> can be represented on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780052.png" /> as an integral with a variable upper bound,
+
3) the function $  f $
 +
is Riemann integrable on $  [ a, b] $,
 +
while the function $  u $
 +
can be represented on $  [ a, b] $
 +
as an integral with a variable upper bound,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780053.png" /></td> </tr></table>
+
$$
 +
u( x)  = C + \int\limits _ { a } ^ { x }  g( t)  dt,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780054.png" /> is absolutely integrable over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780055.png" />.
+
where $  g $
 +
is absolutely integrable over $  a \leq  t \leq  b $.
  
 
When condition 3) is fulfilled, the integral (2) reduces to a [[Lebesgue integral|Lebesgue integral]] by the formula
 
When condition 3) is fulfilled, the integral (2) reduces to a [[Lebesgue integral|Lebesgue integral]] by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780056.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4 }
 +
\int\limits _ { a } ^ { b }  f( x)  du( x)  = \
 +
\int\limits _ { a } ^ { b }  f( x) g( x) dx.
 +
$$
  
(The right-hand side is a Riemann integral if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780057.png" /> is Riemann integrable.) In particular, (4) holds if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780058.png" /> has a bounded and Riemann-integrable derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780059.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780060.png" />; in this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780061.png" />.
+
(The right-hand side is a Riemann integral if $  g $
 +
is Riemann integrable.) In particular, (4) holds if $  u $
 +
has a bounded and Riemann-integrable derivative $  u  ^  \prime  $
 +
on $  [ a, b] $;  
 +
in this case $  g = u  ^  \prime  $.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780062.png" /> is integrable with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780063.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780064.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780065.png" /> is also integrable with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780066.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780067.png" />. This statement leads to a number of further conditions on the existence of Stieltjes integrals.
+
If $  u $
 +
is integrable with respect to $  f $
 +
over $  [ a, b] $,  
 +
then $  f $
 +
is also integrable with respect to $  u $
 +
over $  [ a, b] $.  
 +
This statement leads to a number of further conditions on the existence of Stieltjes integrals.
  
 
The Stieltjes integral has the property of linearity relative to both the integrand and the integrating function (given the condition that every one of the Stieltjes integrals on the right-hand side exists):
 
The Stieltjes integral has the property of linearity relative to both the integrand and the integrating function (given the condition that every one of the Stieltjes integrals on the right-hand side exists):
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780068.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { a } ^ { b }  [ \alpha f _ {1} ( x) + \beta f _ {2} ( x)]  du( x) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780069.png" /></td> </tr></table>
+
$$
 +
= \
 +
\alpha \int\limits _ { a } ^ { b }  f _ {1} ( x)  du( x) + \beta \int\limits _ { a } ^ { b }  f _ {2} ( x)  du( x),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780070.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { a } ^ { b }  f( x)  d[ \alpha u _ {1} ( x) + \beta u _ {2} ( x)] =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780071.png" /></td> </tr></table>
+
$$
 +
= \
 +
\alpha \int\limits _ { a } ^ { b }  f( x)  du _ {1} ( x) + \beta \int\limits _ { a } ^ { b }  f( x)  du _ {2} ( x).
 +
$$
  
Generally speaking, Stieltjes integrals do not possess the property of additivity: The existence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780072.png" /> does not follow from the existence of both the integrals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780073.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780074.png" /> (the converse is, instead, true if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780075.png" />).
+
Generally speaking, Stieltjes integrals do not possess the property of additivity: The existence of $  \int _ {a}  ^ {b} f( x)  du( x) $
 +
does not follow from the existence of both the integrals $  \int _ {a}  ^ {c} f( x)  du( x) $
 +
and $  \int _ {c}  ^ {b} f( x)  du( x) $(
 +
the converse is, instead, true if $  a < c < b $).
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780076.png" /> is bounded on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780077.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780078.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780079.png" /> increases monotonically on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780080.png" />, then there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780081.png" /> satisfying the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780082.png" />, such that the mean-value formula
+
If $  f $
 +
is bounded on $  [ a, b] $,  
 +
$  m \leq  f( x) \leq  M $,  
 +
and $  u $
 +
increases monotonically on $  [ a, b] $,  
 +
then there exists a $  \mu $
 +
satisfying the inequality $  m \leq  \mu \leq  M $,  
 +
such that the mean-value formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780083.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
$$ \tag{5 }
 +
\int\limits _ { a } ^ { b }  f( x)  du( x)  = \
 +
\mu [ u( b) - u( a)]
 +
$$
  
holds for a Stieltjes integral. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780084.png" /> is continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780085.png" />, then there exists a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780086.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780087.png" />.
+
holds for a Stieltjes integral. In particular, if $  f $
 +
is continuous on $  [ a, b] $,  
 +
then there exists a point $  \xi \in [ a, b] $
 +
such that $  \mu = f( \xi ) $.
  
A Stieltjes integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780088.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780089.png" /> is of bounded variation, provides the general form of a continuous linear functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780090.png" /> on the space of continuous functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780091.png" /> (Riesz' theorem).
+
A Stieltjes integral $  \int _ {a}  ^ {b} f( x)  du( x) $,  
 +
where $  u $
 +
is of bounded variation, provides the general form of a continuous linear functional $  F( f  ) $
 +
on the space of continuous functions on $  [ a, b] $(
 +
Riesz' theorem).
  
When the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780092.png" /> is of bounded variation, the value of the Stieltjes integral coincides with the value of the corresponding [[Lebesgue–Stieltjes integral|Lebesgue–Stieltjes integral]].
+
When the function $  u $
 +
is of bounded variation, the value of the Stieltjes integral coincides with the value of the corresponding [[Lebesgue–Stieltjes integral|Lebesgue–Stieltjes integral]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Th.J. Stieltjes,  "Recherches sur les fractions continues"  ''C.R. Acad. Sci. Paris'' , '''118'''  (1894)  pp. 1401–1403</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.I. Smirnov,  "A course of higher mathematics" , '''5''' , Addison-Wesley  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.I. Glivenko,  "The Stieltjes integral" , Moscow-Leningrad  (1936)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Th.J. Stieltjes,  "Recherches sur les fractions continues"  ''C.R. Acad. Sci. Paris'' , '''118'''  (1894)  pp. 1401–1403</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.I. Smirnov,  "A course of higher mathematics" , '''5''' , Addison-Wesley  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.I. Glivenko,  "The Stieltjes integral" , Moscow-Leningrad  (1936)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K.A. Ross,  "Elementary analysis: The theory of calculus" , Springer  (1980)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W. Rudin,  "Principles of mathematical analysis" , McGraw-Hill  (1976)  pp. 75–78</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  T.M. Apostol,  "Mathematical analysis" , Addison-Wesley  (1974)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K.A. Ross,  "Elementary analysis: The theory of calculus" , Springer  (1980)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W. Rudin,  "Principles of mathematical analysis" , McGraw-Hill  (1976)  pp. 75–78</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  T.M. Apostol,  "Mathematical analysis" , Addison-Wesley  (1974)</TD></TR></table>

Latest revision as of 08:23, 6 June 2020


A generalization of the concept of the Riemann integral, realizing the notion of integrating a function $ f $ with respect to another function $ u $. Let two functions $ f $ and $ u $ be defined and bounded on $ [ a, b] $ and let $ a = x _ {0} < \dots < x _ {n} = b $. A sum of the form

$$ \tag{1 } \sigma = f( \xi _ {1} ) [ u( x _ {1} ) - u( x _ {0} )] + \dots + f( \xi _ {n} )[ u( x _ {n} ) - u( x _ {n-} 1 )], $$

where $ x _ {i-} 1 \leq \xi _ {i} \leq x _ {i} $, $ i = 1 \dots n $, is called a Stieltjes integral sum. A number $ I $ is called the limit of the integral sums (1) when $ \max _ {i} \Delta x _ {i} \rightarrow 0 $ if for each $ \epsilon > 0 $ there is a $ \delta > 0 $ such that if $ \max \Delta x _ {i} < \delta $, the inequality $ | \sigma - I | < \epsilon $ holds. If the limit $ I $ exists when $ \max _ {i} \Delta x _ {i} \rightarrow 0 $ and is finite, then the function $ f $ is said to be integrable with respect to the function $ u $ over $ [ a, b] $, and the limit is called the Stieltjes integral (or the Riemann–Stieltjes integral) of $ f $ with respect to $ u $, and is denoted by

$$ \tag{2 } I = \int\limits _ { a } ^ { b } f( x) du( x); $$

the function $ u $ is said to be the integrating function. Th.J. Stieltjes [1] hit upon the idea of such an integral when studying the positive "distribution of masses" on a straight line defined by an increasing function $ u $, the points of discontinuity of which correspond to masses that are "concentrated at one point" .

The Riemann integral is a particular case of the Stieltjes integral, when a function $ x+ C $, where $ C = \textrm{ const } $, is taken as the integrating function $ u $.

When the integrating function $ u $ increases monotonically, the upper and lower Darboux–Stieltjes sums are studied:

$$ \tag{3 } S = \sum _ { i= } 1 ^ { n } M _ {i} [ u( x _ {i} ) - u( x _ {i-} 1 )], $$

$$ s = \sum _ { i= } 1 ^ { n } m _ {i} [ u( x _ {i} ) - u( x _ {i-} 1 )], $$

where $ m _ {i} $ and $ M _ {i} $ are the greatest lower and least upper bounds of $ f $ on $ [ x _ {i-} 1 , x _ {i} ] $.

For a Stieltjes integral to exists, it is sufficient for one of the following conditions to be fulfilled:

1) the function $ f $ is continuous on $ [ a, b] $, while the function $ u $ is of bounded variation on $ [ a, b] $;

2) the function $ f $ is Riemann integrable on $ [ a, b] $, while the function $ u $ satisfies a Lipschitz condition on $ [ a, b] $, i.e. $ | u( x _ {1} ) - u( x _ {2} ) | \leq C | x _ {1} - x _ {2} | $, where $ C = \textrm{ const } $, for any $ x _ {1} $ and $ x _ {2} $ from $ [ a, b] $;

3) the function $ f $ is Riemann integrable on $ [ a, b] $, while the function $ u $ can be represented on $ [ a, b] $ as an integral with a variable upper bound,

$$ u( x) = C + \int\limits _ { a } ^ { x } g( t) dt, $$

where $ g $ is absolutely integrable over $ a \leq t \leq b $.

When condition 3) is fulfilled, the integral (2) reduces to a Lebesgue integral by the formula

$$ \tag{4 } \int\limits _ { a } ^ { b } f( x) du( x) = \ \int\limits _ { a } ^ { b } f( x) g( x) dx. $$

(The right-hand side is a Riemann integral if $ g $ is Riemann integrable.) In particular, (4) holds if $ u $ has a bounded and Riemann-integrable derivative $ u ^ \prime $ on $ [ a, b] $; in this case $ g = u ^ \prime $.

If $ u $ is integrable with respect to $ f $ over $ [ a, b] $, then $ f $ is also integrable with respect to $ u $ over $ [ a, b] $. This statement leads to a number of further conditions on the existence of Stieltjes integrals.

The Stieltjes integral has the property of linearity relative to both the integrand and the integrating function (given the condition that every one of the Stieltjes integrals on the right-hand side exists):

$$ \int\limits _ { a } ^ { b } [ \alpha f _ {1} ( x) + \beta f _ {2} ( x)] du( x) = $$

$$ = \ \alpha \int\limits _ { a } ^ { b } f _ {1} ( x) du( x) + \beta \int\limits _ { a } ^ { b } f _ {2} ( x) du( x), $$

$$ \int\limits _ { a } ^ { b } f( x) d[ \alpha u _ {1} ( x) + \beta u _ {2} ( x)] = $$

$$ = \ \alpha \int\limits _ { a } ^ { b } f( x) du _ {1} ( x) + \beta \int\limits _ { a } ^ { b } f( x) du _ {2} ( x). $$

Generally speaking, Stieltjes integrals do not possess the property of additivity: The existence of $ \int _ {a} ^ {b} f( x) du( x) $ does not follow from the existence of both the integrals $ \int _ {a} ^ {c} f( x) du( x) $ and $ \int _ {c} ^ {b} f( x) du( x) $( the converse is, instead, true if $ a < c < b $).

If $ f $ is bounded on $ [ a, b] $, $ m \leq f( x) \leq M $, and $ u $ increases monotonically on $ [ a, b] $, then there exists a $ \mu $ satisfying the inequality $ m \leq \mu \leq M $, such that the mean-value formula

$$ \tag{5 } \int\limits _ { a } ^ { b } f( x) du( x) = \ \mu [ u( b) - u( a)] $$

holds for a Stieltjes integral. In particular, if $ f $ is continuous on $ [ a, b] $, then there exists a point $ \xi \in [ a, b] $ such that $ \mu = f( \xi ) $.

A Stieltjes integral $ \int _ {a} ^ {b} f( x) du( x) $, where $ u $ is of bounded variation, provides the general form of a continuous linear functional $ F( f ) $ on the space of continuous functions on $ [ a, b] $( Riesz' theorem).

When the function $ u $ is of bounded variation, the value of the Stieltjes integral coincides with the value of the corresponding Lebesgue–Stieltjes integral.

References

[1] Th.J. Stieltjes, "Recherches sur les fractions continues" C.R. Acad. Sci. Paris , 118 (1894) pp. 1401–1403
[2] V.I. Smirnov, "A course of higher mathematics" , 5 , Addison-Wesley (1964) (Translated from Russian)
[3] V.I. Glivenko, "The Stieltjes integral" , Moscow-Leningrad (1936) (In Russian)

Comments

References

[a1] K.A. Ross, "Elementary analysis: The theory of calculus" , Springer (1980)
[a2] W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1976) pp. 75–78
[a3] T.M. Apostol, "Mathematical analysis" , Addison-Wesley (1974)
How to Cite This Entry:
Stieltjes integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stieltjes_integral&oldid=48840
This article was adapted from an original article by V.A. Il'in (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article