Difference between revisions of "Spinor representation"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | s0867701.png | ||
+ | $#A+1 = 97 n = 2 | ||
+ | $#C+1 = 97 : ~/encyclopedia/old_files/data/S086/S.0806770 Spinor representation, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''spin representation'' | ''spin representation'' | ||
− | The simplest faithful linear representation (cf. [[Faithful representation|Faithful representation]]; [[Linear representation|Linear representation]]) of the [[Spinor group|spinor group]] | + | The simplest faithful linear representation (cf. [[Faithful representation|Faithful representation]]; [[Linear representation|Linear representation]]) of the [[Spinor group|spinor group]] $ \mathop{\rm Spin} _ {n} ( Q) $, |
+ | or the linear representation of the corresponding even Clifford algebra $ C ^ {+} = C ^ {+} ( Q) $( | ||
+ | see [[Spinor group|Spinor group]]; $ Q $ | ||
+ | is a [[Quadratic form|quadratic form]]). If the ground field $ K $ | ||
+ | is algebraically closed, then the algebra $ C ^ {+} $ | ||
+ | is isomorphic to the complete matrix algebra $ M _ {2 ^ {m} } ( K) $( | ||
+ | where $ n = 2 m + 1 $) | ||
+ | or to the algebra $ M _ {2 ^ {m-} 1 } ( K) \oplus M _ {2 ^ {m-} 1 } ( K) $( | ||
+ | where $ n = 2 m $). | ||
+ | Therefore there is defined a linear representation $ \rho $ | ||
+ | of the algebra $ C ^ {+} $ | ||
+ | on the space of dimension $ 2 ^ {m} $ | ||
+ | over $ K $; | ||
+ | this representation is called a spinor representation. The restriction of $ \rho $ | ||
+ | to $ \mathop{\rm Spin} _ {n} ( Q) $ | ||
+ | is called the spinor representation of $ \mathop{\rm Spin} _ {n} ( Q) $. | ||
+ | For odd $ n $, | ||
+ | the spinor representation is irreducible, and for even $ n $ | ||
+ | it splits into the direct sum of two non-equivalent irreducible representations $ \rho ^ \prime $ | ||
+ | and $ \rho ^ {\prime\prime} $, | ||
+ | which are called half-spin (or) representations. The elements of the space of the spinor representation are called spinors, and those of the space of the half-spinor representation half-spinors. The spinor representation of the spinor group $ \mathop{\rm Spin} _ {n} $ | ||
+ | is self-dual for any $ n \geq 3 $, | ||
+ | whereas the half-spinor representations $ \rho ^ \prime $ | ||
+ | and $ \rho ^ {\prime\prime} $ | ||
+ | of the spinor group $ \mathop{\rm Spin} _ {2m} $ | ||
+ | are self-dual for even $ m $ | ||
+ | and dual to one another for odd $ m $. | ||
+ | The spinor representation of $ \mathop{\rm Spin} _ {n} $ | ||
+ | is faithful for all $ n \geq 3 $, | ||
+ | while the half-spinor representations of $ \mathop{\rm Spin} _ {2m} $ | ||
+ | are faithful for odd $ m $, | ||
+ | but have a kernel of order two when $ m $ | ||
+ | is even. | ||
− | For a quadratic form | + | For a quadratic form $ Q $ |
+ | on a space $ V $ | ||
+ | over some subfield $ k \subset K $, | ||
+ | the spinor representation is not always defined over $ k $. | ||
+ | However, if the Witt index of $ Q $ | ||
+ | is maximal, that is, equal to $ [ n / 2 ] $( | ||
+ | in particular, if $ k $ | ||
+ | is algebraically closed), then the spinor and half-spinor representations are defined over $ k $. | ||
+ | In this case these representations can be described in the following way if $ \mathop{\rm char} k \neq 2 $( | ||
+ | see [[#References|[1]]]). Let $ L $ | ||
+ | and $ M $ | ||
+ | be $ k $- | ||
+ | subspaces of the $ k $- | ||
+ | space $ V $ | ||
+ | that are maximal totally isotropic (with respect to the symmetric bilinear form on $ V $ | ||
+ | associated with $ Q $) | ||
+ | and let $ L \cap M = 0 $. | ||
+ | Let $ C _ {L} $ | ||
+ | be the subalgebra of the Clifford algebra $ C = C ( Q) $ | ||
+ | generated by the subspace $ L \subset V $, | ||
+ | and let $ e _ {M} \in C $ | ||
+ | be the product of $ m $ | ||
+ | vectors forming a $ k $- | ||
+ | basis of $ M $. | ||
+ | If $ n $ | ||
+ | is even, $ n = 2m $, | ||
+ | then the spinor representation is realized in the left ideal $ C e _ {M} $ | ||
+ | and acts there by left translation: $ \rho ( s) x = s x $( | ||
+ | $ s \in C ^ {+} $, | ||
+ | $ x \in C e _ {M} $). | ||
+ | Furthermore, the mapping $ x \mapsto x e _ {M} $ | ||
+ | defines an isomorphism of vector spaces $ C _ {L} \rightarrow C e _ {M} $ | ||
+ | that enables one to realize the spinor representation in $ C _ {L} $, | ||
+ | which is naturally isomorphic to the exterior algebra over $ L $. | ||
+ | The half-spinor representations $ \rho ^ \prime $ | ||
+ | and $ \rho ^ {\prime\prime} $ | ||
+ | are realized in the $ 2 ^ {m-} 1 $- | ||
+ | dimensional subspaces $ C _ {L} \cap C ^ {+} $ | ||
+ | and $ C _ {L} \cap C ^ {-} $. | ||
− | If | + | If $ n $ |
+ | is odd, then $ V $ | ||
+ | can be imbedded in the $ ( n + 1 ) $- | ||
+ | dimensional vector space $ V _ {1} = V \oplus k \epsilon $ | ||
+ | over $ k $. | ||
+ | One defines a quadratic form $ Q _ {1} $ | ||
+ | on $ V _ {1} $ | ||
+ | by putting $ Q _ {1} ( v + \epsilon ) = Q ( v) - \lambda ^ {2} $ | ||
+ | for all $ v \in V $ | ||
+ | and $ \lambda \in k $. | ||
+ | $ Q _ {1} $ | ||
+ | is a non-degenerate quadratic form of maximal Witt index defined over $ k $ | ||
+ | on the even-dimensional vector space $ V _ {1} $. | ||
+ | The spinor representation of $ C ^ {+} ( Q) $( | ||
+ | or of $ \mathop{\rm Spin} _ {n} ( Q) $) | ||
+ | is obtained by restricting any of the half-spinor representations of $ C ^ {+} ( Q _ {1} ) $( | ||
+ | or of $ \mathop{\rm Spin} _ {n+} 1 ( Q _ {1} ) $) | ||
+ | to the subalgebra $ C ^ {+} ( Q) $( | ||
+ | or $ \mathop{\rm Spin} _ {n} ( Q) $, | ||
+ | respectively). | ||
− | The problem of classifying spinors has been solved when | + | The problem of classifying spinors has been solved when $ 3 \leq n \leq 14 $ |
+ | and $ k $ | ||
+ | is an algebraically closed field of characteristic 0 (see [[#References|[4]]], [[#References|[8]]], [[#References|[9]]]). The problem consists of the following: 1) describe the orbits of $ \rho ( \mathop{\rm Spin} _ {n} ) $ | ||
+ | in the spinor space by giving a representative of each orbit; 2) calculate the stabilizers in $ \mathop{\rm Spin} _ {n} $ | ||
+ | of each of these representatives; and 3) describe the algebra of invariants of the linear group $ \rho ( \mathop{\rm Spin} _ {n} ) $. | ||
− | The existence of spinor and half-spinor representations of the Lie algebra | + | The existence of spinor and half-spinor representations of the Lie algebra $ \mathfrak s \mathfrak p _ {n} $ |
+ | of $ \mathop{\rm Spin} _ {n} $ | ||
+ | was discovered by E. Cartan in 1913, when he classified the finite-dimensional representations of simple Lie algebras [[#References|[6]]]. In 1935, R. Brauer and H. Weyl described spinor and half-spinor representations in terms of Clifford algebras [[#References|[5]]]. P. Dirac [[#References|[3]]] showed how spinors could be used in quantum mechanics to describe the rotation of an electron. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Algèbre" , ''Eléments de mathématiques'' , Hermann (1970) pp. Chapt. II. Algèbre linéaire {{MR|0274237}} {{ZBL|0211.02401}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Weyl, "Classical groups, their invariants and representations" , Princeton Univ. Press (1946) (Translated from German) {{MR|0000255}} {{ZBL|1024.20502}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.A.M. Dirac, "Principles of quantum mechanics" , Clarendon Press (1958) {{MR|2303789}} {{MR|0116921}} {{MR|0023198}} {{MR|1522388}} {{ZBL|0080.22005}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.L. Popov, "Classification of spinors of dimension fourteen" ''Trans. Moscow Math. Soc.'' , '''1''' (1980) pp. 181–232 ''Trudy Moskov. Mat. Obshch.'' , '''37''' (1978) pp. 173–217 {{MR|0514331}} {{ZBL|0443.20038}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> R. Brauer, H. Weyl, "Spinors in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677098.png" />-dimensions" ''Amer. J. Math.'' , '''57''' : 2 (1935) pp. 425–449 {{MR|1507084}} {{ZBL|}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> E. Cartan, "Les groupes projectifs qui ne laissant invariante aucune multiplicité plane" ''Bull. Soc. Math. France'' , '''41''' (1913) pp. 53–96</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> C. Chevalley, "The algebraic theory of spinors" , Columbia Univ. Press (1954) {{MR|0060497}} {{ZBL|0057.25901}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> V. Gatti, E. Viniberghi, "Spinors in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677099.png" />-dimensional space" ''Adv. Math.'' , '''30''' : 2 (1978) pp. 137–155</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> J.I. Igusa, "A classification of spinors up to dimension twelve" ''Amer. J. Math.'' , '''92''' : 4 (1970) pp. 997–1028 {{MR|0277558}} {{ZBL|0217.36203}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Algèbre" , ''Eléments de mathématiques'' , Hermann (1970) pp. Chapt. II. Algèbre linéaire {{MR|0274237}} {{ZBL|0211.02401}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Weyl, "Classical groups, their invariants and representations" , Princeton Univ. Press (1946) (Translated from German) {{MR|0000255}} {{ZBL|1024.20502}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.A.M. Dirac, "Principles of quantum mechanics" , Clarendon Press (1958) {{MR|2303789}} {{MR|0116921}} {{MR|0023198}} {{MR|1522388}} {{ZBL|0080.22005}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.L. Popov, "Classification of spinors of dimension fourteen" ''Trans. Moscow Math. Soc.'' , '''1''' (1980) pp. 181–232 ''Trudy Moskov. Mat. Obshch.'' , '''37''' (1978) pp. 173–217 {{MR|0514331}} {{ZBL|0443.20038}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> R. Brauer, H. Weyl, "Spinors in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677098.png" />-dimensions" ''Amer. J. Math.'' , '''57''' : 2 (1935) pp. 425–449 {{MR|1507084}} {{ZBL|}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> E. Cartan, "Les groupes projectifs qui ne laissant invariante aucune multiplicité plane" ''Bull. Soc. Math. France'' , '''41''' (1913) pp. 53–96</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> C. Chevalley, "The algebraic theory of spinors" , Columbia Univ. Press (1954) {{MR|0060497}} {{ZBL|0057.25901}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> V. Gatti, E. Viniberghi, "Spinors in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677099.png" />-dimensional space" ''Adv. Math.'' , '''30''' : 2 (1978) pp. 137–155</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> J.I. Igusa, "A classification of spinors up to dimension twelve" ''Amer. J. Math.'' , '''92''' : 4 (1970) pp. 997–1028 {{MR|0277558}} {{ZBL|0217.36203}} </TD></TR></table> |
Revision as of 08:22, 6 June 2020
spin representation
The simplest faithful linear representation (cf. Faithful representation; Linear representation) of the spinor group $ \mathop{\rm Spin} _ {n} ( Q) $, or the linear representation of the corresponding even Clifford algebra $ C ^ {+} = C ^ {+} ( Q) $( see Spinor group; $ Q $ is a quadratic form). If the ground field $ K $ is algebraically closed, then the algebra $ C ^ {+} $ is isomorphic to the complete matrix algebra $ M _ {2 ^ {m} } ( K) $( where $ n = 2 m + 1 $) or to the algebra $ M _ {2 ^ {m-} 1 } ( K) \oplus M _ {2 ^ {m-} 1 } ( K) $( where $ n = 2 m $). Therefore there is defined a linear representation $ \rho $ of the algebra $ C ^ {+} $ on the space of dimension $ 2 ^ {m} $ over $ K $; this representation is called a spinor representation. The restriction of $ \rho $ to $ \mathop{\rm Spin} _ {n} ( Q) $ is called the spinor representation of $ \mathop{\rm Spin} _ {n} ( Q) $. For odd $ n $, the spinor representation is irreducible, and for even $ n $ it splits into the direct sum of two non-equivalent irreducible representations $ \rho ^ \prime $ and $ \rho ^ {\prime\prime} $, which are called half-spin (or) representations. The elements of the space of the spinor representation are called spinors, and those of the space of the half-spinor representation half-spinors. The spinor representation of the spinor group $ \mathop{\rm Spin} _ {n} $ is self-dual for any $ n \geq 3 $, whereas the half-spinor representations $ \rho ^ \prime $ and $ \rho ^ {\prime\prime} $ of the spinor group $ \mathop{\rm Spin} _ {2m} $ are self-dual for even $ m $ and dual to one another for odd $ m $. The spinor representation of $ \mathop{\rm Spin} _ {n} $ is faithful for all $ n \geq 3 $, while the half-spinor representations of $ \mathop{\rm Spin} _ {2m} $ are faithful for odd $ m $, but have a kernel of order two when $ m $ is even.
For a quadratic form $ Q $ on a space $ V $ over some subfield $ k \subset K $, the spinor representation is not always defined over $ k $. However, if the Witt index of $ Q $ is maximal, that is, equal to $ [ n / 2 ] $( in particular, if $ k $ is algebraically closed), then the spinor and half-spinor representations are defined over $ k $. In this case these representations can be described in the following way if $ \mathop{\rm char} k \neq 2 $( see [1]). Let $ L $ and $ M $ be $ k $- subspaces of the $ k $- space $ V $ that are maximal totally isotropic (with respect to the symmetric bilinear form on $ V $ associated with $ Q $) and let $ L \cap M = 0 $. Let $ C _ {L} $ be the subalgebra of the Clifford algebra $ C = C ( Q) $ generated by the subspace $ L \subset V $, and let $ e _ {M} \in C $ be the product of $ m $ vectors forming a $ k $- basis of $ M $. If $ n $ is even, $ n = 2m $, then the spinor representation is realized in the left ideal $ C e _ {M} $ and acts there by left translation: $ \rho ( s) x = s x $( $ s \in C ^ {+} $, $ x \in C e _ {M} $). Furthermore, the mapping $ x \mapsto x e _ {M} $ defines an isomorphism of vector spaces $ C _ {L} \rightarrow C e _ {M} $ that enables one to realize the spinor representation in $ C _ {L} $, which is naturally isomorphic to the exterior algebra over $ L $. The half-spinor representations $ \rho ^ \prime $ and $ \rho ^ {\prime\prime} $ are realized in the $ 2 ^ {m-} 1 $- dimensional subspaces $ C _ {L} \cap C ^ {+} $ and $ C _ {L} \cap C ^ {-} $.
If $ n $ is odd, then $ V $ can be imbedded in the $ ( n + 1 ) $- dimensional vector space $ V _ {1} = V \oplus k \epsilon $ over $ k $. One defines a quadratic form $ Q _ {1} $ on $ V _ {1} $ by putting $ Q _ {1} ( v + \epsilon ) = Q ( v) - \lambda ^ {2} $ for all $ v \in V $ and $ \lambda \in k $. $ Q _ {1} $ is a non-degenerate quadratic form of maximal Witt index defined over $ k $ on the even-dimensional vector space $ V _ {1} $. The spinor representation of $ C ^ {+} ( Q) $( or of $ \mathop{\rm Spin} _ {n} ( Q) $) is obtained by restricting any of the half-spinor representations of $ C ^ {+} ( Q _ {1} ) $( or of $ \mathop{\rm Spin} _ {n+} 1 ( Q _ {1} ) $) to the subalgebra $ C ^ {+} ( Q) $( or $ \mathop{\rm Spin} _ {n} ( Q) $, respectively).
The problem of classifying spinors has been solved when $ 3 \leq n \leq 14 $ and $ k $ is an algebraically closed field of characteristic 0 (see [4], [8], [9]). The problem consists of the following: 1) describe the orbits of $ \rho ( \mathop{\rm Spin} _ {n} ) $ in the spinor space by giving a representative of each orbit; 2) calculate the stabilizers in $ \mathop{\rm Spin} _ {n} $ of each of these representatives; and 3) describe the algebra of invariants of the linear group $ \rho ( \mathop{\rm Spin} _ {n} ) $.
The existence of spinor and half-spinor representations of the Lie algebra $ \mathfrak s \mathfrak p _ {n} $ of $ \mathop{\rm Spin} _ {n} $ was discovered by E. Cartan in 1913, when he classified the finite-dimensional representations of simple Lie algebras [6]. In 1935, R. Brauer and H. Weyl described spinor and half-spinor representations in terms of Clifford algebras [5]. P. Dirac [3] showed how spinors could be used in quantum mechanics to describe the rotation of an electron.
References
[1] | N. Bourbaki, "Algèbre" , Eléments de mathématiques , Hermann (1970) pp. Chapt. II. Algèbre linéaire MR0274237 Zbl 0211.02401 |
[2] | H. Weyl, "Classical groups, their invariants and representations" , Princeton Univ. Press (1946) (Translated from German) MR0000255 Zbl 1024.20502 |
[3] | P.A.M. Dirac, "Principles of quantum mechanics" , Clarendon Press (1958) MR2303789 MR0116921 MR0023198 MR1522388 Zbl 0080.22005 |
[4] | V.L. Popov, "Classification of spinors of dimension fourteen" Trans. Moscow Math. Soc. , 1 (1980) pp. 181–232 Trudy Moskov. Mat. Obshch. , 37 (1978) pp. 173–217 MR0514331 Zbl 0443.20038 |
[5] | R. Brauer, H. Weyl, "Spinors in -dimensions" Amer. J. Math. , 57 : 2 (1935) pp. 425–449 MR1507084 |
[6] | E. Cartan, "Les groupes projectifs qui ne laissant invariante aucune multiplicité plane" Bull. Soc. Math. France , 41 (1913) pp. 53–96 |
[7] | C. Chevalley, "The algebraic theory of spinors" , Columbia Univ. Press (1954) MR0060497 Zbl 0057.25901 |
[8] | V. Gatti, E. Viniberghi, "Spinors in -dimensional space" Adv. Math. , 30 : 2 (1978) pp. 137–155 |
[9] | J.I. Igusa, "A classification of spinors up to dimension twelve" Amer. J. Math. , 92 : 4 (1970) pp. 997–1028 MR0277558 Zbl 0217.36203 |
Spinor representation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spinor_representation&oldid=48780