Namespaces
Variants
Actions

Difference between revisions of "Spinor representation"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
s0867701.png
 +
$#A+1 = 97 n = 2
 +
$#C+1 = 97 : ~/encyclopedia/old_files/data/S086/S.0806770 Spinor representation,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''spin representation''
 
''spin representation''
  
The simplest faithful linear representation (cf. [[Faithful representation|Faithful representation]]; [[Linear representation|Linear representation]]) of the [[Spinor group|spinor group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s0867701.png" />, or the linear representation of the corresponding even Clifford algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s0867702.png" /> (see [[Spinor group|Spinor group]]; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s0867703.png" /> is a [[Quadratic form|quadratic form]]). If the ground field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s0867704.png" /> is algebraically closed, then the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s0867705.png" /> is isomorphic to the complete matrix algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s0867706.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s0867707.png" />) or to the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s0867708.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s0867709.png" />). Therefore there is defined a linear representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677010.png" /> of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677011.png" /> on the space of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677012.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677013.png" />; this representation is called a spinor representation. The restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677014.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677015.png" /> is called the spinor representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677016.png" />. For odd <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677017.png" />, the spinor representation is irreducible, and for even <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677018.png" /> it splits into the direct sum of two non-equivalent irreducible representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677020.png" />, which are called half-spin (or) representations. The elements of the space of the spinor representation are called spinors, and those of the space of the half-spinor representation half-spinors. The spinor representation of the spinor group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677021.png" /> is self-dual for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677022.png" />, whereas the half-spinor representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677024.png" /> of the spinor group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677025.png" /> are self-dual for even <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677026.png" /> and dual to one another for odd <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677027.png" />. The spinor representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677028.png" /> is faithful for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677029.png" />, while the half-spinor representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677030.png" /> are faithful for odd <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677031.png" />, but have a kernel of order two when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677032.png" /> is even.
+
The simplest faithful linear representation (cf. [[Faithful representation|Faithful representation]]; [[Linear representation|Linear representation]]) of the [[Spinor group|spinor group]] $  \mathop{\rm Spin} _ {n} ( Q) $,  
 +
or the linear representation of the corresponding even Clifford algebra $  C  ^ {+} = C  ^ {+} ( Q) $(
 +
see [[Spinor group|Spinor group]]; $  Q $
 +
is a [[Quadratic form|quadratic form]]). If the ground field $  K $
 +
is algebraically closed, then the algebra $  C  ^ {+} $
 +
is isomorphic to the complete matrix algebra $  M _ {2  ^ {m}  } ( K) $(
 +
where $  n = 2 m + 1 $)  
 +
or to the algebra $  M _ {2  ^ {m-}  1 } ( K) \oplus M _ {2  ^ {m-}  1 } ( K) $(
 +
where $  n = 2 m $).  
 +
Therefore there is defined a linear representation $  \rho $
 +
of the algebra $  C  ^ {+} $
 +
on the space of dimension $  2  ^ {m} $
 +
over $  K $;  
 +
this representation is called a spinor representation. The restriction of $  \rho $
 +
to $  \mathop{\rm Spin} _ {n} ( Q) $
 +
is called the spinor representation of $  \mathop{\rm Spin} _ {n} ( Q) $.  
 +
For odd $  n $,  
 +
the spinor representation is irreducible, and for even $  n $
 +
it splits into the direct sum of two non-equivalent irreducible representations $  \rho  ^  \prime  $
 +
and $  \rho  ^ {\prime\prime} $,  
 +
which are called half-spin (or) representations. The elements of the space of the spinor representation are called spinors, and those of the space of the half-spinor representation half-spinors. The spinor representation of the spinor group $  \mathop{\rm Spin} _ {n} $
 +
is self-dual for any $  n \geq  3 $,  
 +
whereas the half-spinor representations $  \rho  ^  \prime  $
 +
and $  \rho  ^ {\prime\prime} $
 +
of the spinor group $  \mathop{\rm Spin} _ {2m} $
 +
are self-dual for even $  m $
 +
and dual to one another for odd $  m $.  
 +
The spinor representation of $  \mathop{\rm Spin} _ {n} $
 +
is faithful for all $  n \geq  3 $,  
 +
while the half-spinor representations of $  \mathop{\rm Spin} _ {2m} $
 +
are faithful for odd $  m $,  
 +
but have a kernel of order two when $  m $
 +
is even.
  
For a quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677033.png" /> on a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677034.png" /> over some subfield <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677035.png" />, the spinor representation is not always defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677036.png" />. However, if the Witt index of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677037.png" /> is maximal, that is, equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677038.png" /> (in particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677039.png" /> is algebraically closed), then the spinor and half-spinor representations are defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677040.png" />. In this case these representations can be described in the following way if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677041.png" /> (see [[#References|[1]]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677043.png" /> be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677044.png" />-subspaces of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677045.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677046.png" /> that are maximal totally isotropic (with respect to the symmetric bilinear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677047.png" /> associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677048.png" />) and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677049.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677050.png" /> be the subalgebra of the Clifford algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677051.png" /> generated by the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677052.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677053.png" /> be the product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677054.png" /> vectors forming a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677055.png" />-basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677056.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677057.png" /> is even, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677058.png" />, then the spinor representation is realized in the left ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677059.png" /> and acts there by left translation: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677060.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677062.png" />). Furthermore, the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677063.png" /> defines an isomorphism of vector spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677064.png" /> that enables one to realize the spinor representation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677065.png" />, which is naturally isomorphic to the exterior algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677066.png" />. The half-spinor representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677067.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677068.png" /> are realized in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677069.png" />-dimensional subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677070.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677071.png" />.
+
For a quadratic form $  Q $
 +
on a space $  V $
 +
over some subfield $  k \subset  K $,  
 +
the spinor representation is not always defined over $  k $.  
 +
However, if the Witt index of $  Q $
 +
is maximal, that is, equal to $  [ n / 2 ] $(
 +
in particular, if $  k $
 +
is algebraically closed), then the spinor and half-spinor representations are defined over $  k $.  
 +
In this case these representations can be described in the following way if $  \mathop{\rm char}  k \neq 2 $(
 +
see [[#References|[1]]]). Let $  L $
 +
and $  M $
 +
be $  k $-
 +
subspaces of the $  k $-
 +
space $  V $
 +
that are maximal totally isotropic (with respect to the symmetric bilinear form on $  V $
 +
associated with $  Q $)  
 +
and let $  L \cap M = 0 $.  
 +
Let $  C _ {L} $
 +
be the subalgebra of the Clifford algebra $  C = C ( Q) $
 +
generated by the subspace $  L \subset  V $,  
 +
and let $  e _ {M} \in C $
 +
be the product of $  m $
 +
vectors forming a $  k $-
 +
basis of $  M $.  
 +
If $  n $
 +
is even, $  n = 2m $,  
 +
then the spinor representation is realized in the left ideal $  C e _ {M} $
 +
and acts there by left translation: $  \rho ( s) x = s x $(
 +
s \in C  ^ {+} $,  
 +
$  x \in C e _ {M} $).  
 +
Furthermore, the mapping $  x \mapsto x e _ {M} $
 +
defines an isomorphism of vector spaces $  C _ {L} \rightarrow C e _ {M} $
 +
that enables one to realize the spinor representation in $  C _ {L} $,  
 +
which is naturally isomorphic to the exterior algebra over $  L $.  
 +
The half-spinor representations $  \rho  ^  \prime  $
 +
and $  \rho  ^ {\prime\prime} $
 +
are realized in the $  2  ^ {m-} 1 $-
 +
dimensional subspaces $  C _ {L} \cap C  ^ {+} $
 +
and $  C _ {L} \cap C  ^ {-} $.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677072.png" /> is odd, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677073.png" /> can be imbedded in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677074.png" />-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677075.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677076.png" />. One defines a quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677077.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677078.png" /> by putting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677079.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677080.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677081.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677082.png" /> is a non-degenerate quadratic form of maximal Witt index defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677083.png" /> on the even-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677084.png" />. The spinor representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677085.png" /> (or of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677086.png" />) is obtained by restricting any of the half-spinor representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677087.png" /> (or of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677088.png" />) to the subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677089.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677090.png" />, respectively).
+
If $  n $
 +
is odd, then $  V $
 +
can be imbedded in the $  ( n + 1 ) $-
 +
dimensional vector space $  V _ {1} = V \oplus k \epsilon $
 +
over $  k $.  
 +
One defines a quadratic form $  Q _ {1} $
 +
on $  V _ {1} $
 +
by putting $  Q _ {1} ( v + \epsilon ) = Q ( v) - \lambda  ^ {2} $
 +
for all $  v \in V $
 +
and $  \lambda \in k $.  
 +
$  Q _ {1} $
 +
is a non-degenerate quadratic form of maximal Witt index defined over $  k $
 +
on the even-dimensional vector space $  V _ {1} $.  
 +
The spinor representation of $  C  ^ {+} ( Q) $(
 +
or of $  \mathop{\rm Spin} _ {n} ( Q) $)  
 +
is obtained by restricting any of the half-spinor representations of $  C  ^ {+} ( Q _ {1} ) $(
 +
or of $  \mathop{\rm Spin} _ {n+} 1 ( Q _ {1} ) $)  
 +
to the subalgebra $  C  ^ {+} ( Q) $(
 +
or $  \mathop{\rm Spin} _ {n} ( Q) $,  
 +
respectively).
  
The problem of classifying spinors has been solved when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677091.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677092.png" /> is an algebraically closed field of characteristic 0 (see [[#References|[4]]], [[#References|[8]]], [[#References|[9]]]). The problem consists of the following: 1) describe the orbits of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677093.png" /> in the spinor space by giving a representative of each orbit; 2) calculate the stabilizers in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677094.png" /> of each of these representatives; and 3) describe the algebra of invariants of the linear group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677095.png" />.
+
The problem of classifying spinors has been solved when $  3 \leq  n \leq  14 $
 +
and $  k $
 +
is an algebraically closed field of characteristic 0 (see [[#References|[4]]], [[#References|[8]]], [[#References|[9]]]). The problem consists of the following: 1) describe the orbits of $  \rho (  \mathop{\rm Spin} _ {n} ) $
 +
in the spinor space by giving a representative of each orbit; 2) calculate the stabilizers in $  \mathop{\rm Spin} _ {n} $
 +
of each of these representatives; and 3) describe the algebra of invariants of the linear group $  \rho (  \mathop{\rm Spin} _ {n} ) $.
  
The existence of spinor and half-spinor representations of the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677096.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677097.png" /> was discovered by E. Cartan in 1913, when he classified the finite-dimensional representations of simple Lie algebras [[#References|[6]]]. In 1935, R. Brauer and H. Weyl described spinor and half-spinor representations in terms of Clifford algebras [[#References|[5]]]. P. Dirac [[#References|[3]]] showed how spinors could be used in quantum mechanics to describe the rotation of an electron.
+
The existence of spinor and half-spinor representations of the Lie algebra $  \mathfrak s \mathfrak p _ {n} $
 +
of $  \mathop{\rm Spin} _ {n} $
 +
was discovered by E. Cartan in 1913, when he classified the finite-dimensional representations of simple Lie algebras [[#References|[6]]]. In 1935, R. Brauer and H. Weyl described spinor and half-spinor representations in terms of Clifford algebras [[#References|[5]]]. P. Dirac [[#References|[3]]] showed how spinors could be used in quantum mechanics to describe the rotation of an electron.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Algèbre" , ''Eléments de mathématiques'' , Hermann (1970) pp. Chapt. II. Algèbre linéaire {{MR|0274237}} {{ZBL|0211.02401}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Weyl, "Classical groups, their invariants and representations" , Princeton Univ. Press (1946) (Translated from German) {{MR|0000255}} {{ZBL|1024.20502}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.A.M. Dirac, "Principles of quantum mechanics" , Clarendon Press (1958) {{MR|2303789}} {{MR|0116921}} {{MR|0023198}} {{MR|1522388}} {{ZBL|0080.22005}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.L. Popov, "Classification of spinors of dimension fourteen" ''Trans. Moscow Math. Soc.'' , '''1''' (1980) pp. 181–232 ''Trudy Moskov. Mat. Obshch.'' , '''37''' (1978) pp. 173–217 {{MR|0514331}} {{ZBL|0443.20038}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> R. Brauer, H. Weyl, "Spinors in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677098.png" />-dimensions" ''Amer. J. Math.'' , '''57''' : 2 (1935) pp. 425–449 {{MR|1507084}} {{ZBL|}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> E. Cartan, "Les groupes projectifs qui ne laissant invariante aucune multiplicité plane" ''Bull. Soc. Math. France'' , '''41''' (1913) pp. 53–96</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> C. Chevalley, "The algebraic theory of spinors" , Columbia Univ. Press (1954) {{MR|0060497}} {{ZBL|0057.25901}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> V. Gatti, E. Viniberghi, "Spinors in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677099.png" />-dimensional space" ''Adv. Math.'' , '''30''' : 2 (1978) pp. 137–155</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> J.I. Igusa, "A classification of spinors up to dimension twelve" ''Amer. J. Math.'' , '''92''' : 4 (1970) pp. 997–1028 {{MR|0277558}} {{ZBL|0217.36203}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Algèbre" , ''Eléments de mathématiques'' , Hermann (1970) pp. Chapt. II. Algèbre linéaire {{MR|0274237}} {{ZBL|0211.02401}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Weyl, "Classical groups, their invariants and representations" , Princeton Univ. Press (1946) (Translated from German) {{MR|0000255}} {{ZBL|1024.20502}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.A.M. Dirac, "Principles of quantum mechanics" , Clarendon Press (1958) {{MR|2303789}} {{MR|0116921}} {{MR|0023198}} {{MR|1522388}} {{ZBL|0080.22005}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.L. Popov, "Classification of spinors of dimension fourteen" ''Trans. Moscow Math. Soc.'' , '''1''' (1980) pp. 181–232 ''Trudy Moskov. Mat. Obshch.'' , '''37''' (1978) pp. 173–217 {{MR|0514331}} {{ZBL|0443.20038}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> R. Brauer, H. Weyl, "Spinors in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677098.png" />-dimensions" ''Amer. J. Math.'' , '''57''' : 2 (1935) pp. 425–449 {{MR|1507084}} {{ZBL|}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> E. Cartan, "Les groupes projectifs qui ne laissant invariante aucune multiplicité plane" ''Bull. Soc. Math. France'' , '''41''' (1913) pp. 53–96</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> C. Chevalley, "The algebraic theory of spinors" , Columbia Univ. Press (1954) {{MR|0060497}} {{ZBL|0057.25901}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> V. Gatti, E. Viniberghi, "Spinors in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677099.png" />-dimensional space" ''Adv. Math.'' , '''30''' : 2 (1978) pp. 137–155</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> J.I. Igusa, "A classification of spinors up to dimension twelve" ''Amer. J. Math.'' , '''92''' : 4 (1970) pp. 997–1028 {{MR|0277558}} {{ZBL|0217.36203}} </TD></TR></table>

Revision as of 08:22, 6 June 2020


spin representation

The simplest faithful linear representation (cf. Faithful representation; Linear representation) of the spinor group $ \mathop{\rm Spin} _ {n} ( Q) $, or the linear representation of the corresponding even Clifford algebra $ C ^ {+} = C ^ {+} ( Q) $( see Spinor group; $ Q $ is a quadratic form). If the ground field $ K $ is algebraically closed, then the algebra $ C ^ {+} $ is isomorphic to the complete matrix algebra $ M _ {2 ^ {m} } ( K) $( where $ n = 2 m + 1 $) or to the algebra $ M _ {2 ^ {m-} 1 } ( K) \oplus M _ {2 ^ {m-} 1 } ( K) $( where $ n = 2 m $). Therefore there is defined a linear representation $ \rho $ of the algebra $ C ^ {+} $ on the space of dimension $ 2 ^ {m} $ over $ K $; this representation is called a spinor representation. The restriction of $ \rho $ to $ \mathop{\rm Spin} _ {n} ( Q) $ is called the spinor representation of $ \mathop{\rm Spin} _ {n} ( Q) $. For odd $ n $, the spinor representation is irreducible, and for even $ n $ it splits into the direct sum of two non-equivalent irreducible representations $ \rho ^ \prime $ and $ \rho ^ {\prime\prime} $, which are called half-spin (or) representations. The elements of the space of the spinor representation are called spinors, and those of the space of the half-spinor representation half-spinors. The spinor representation of the spinor group $ \mathop{\rm Spin} _ {n} $ is self-dual for any $ n \geq 3 $, whereas the half-spinor representations $ \rho ^ \prime $ and $ \rho ^ {\prime\prime} $ of the spinor group $ \mathop{\rm Spin} _ {2m} $ are self-dual for even $ m $ and dual to one another for odd $ m $. The spinor representation of $ \mathop{\rm Spin} _ {n} $ is faithful for all $ n \geq 3 $, while the half-spinor representations of $ \mathop{\rm Spin} _ {2m} $ are faithful for odd $ m $, but have a kernel of order two when $ m $ is even.

For a quadratic form $ Q $ on a space $ V $ over some subfield $ k \subset K $, the spinor representation is not always defined over $ k $. However, if the Witt index of $ Q $ is maximal, that is, equal to $ [ n / 2 ] $( in particular, if $ k $ is algebraically closed), then the spinor and half-spinor representations are defined over $ k $. In this case these representations can be described in the following way if $ \mathop{\rm char} k \neq 2 $( see [1]). Let $ L $ and $ M $ be $ k $- subspaces of the $ k $- space $ V $ that are maximal totally isotropic (with respect to the symmetric bilinear form on $ V $ associated with $ Q $) and let $ L \cap M = 0 $. Let $ C _ {L} $ be the subalgebra of the Clifford algebra $ C = C ( Q) $ generated by the subspace $ L \subset V $, and let $ e _ {M} \in C $ be the product of $ m $ vectors forming a $ k $- basis of $ M $. If $ n $ is even, $ n = 2m $, then the spinor representation is realized in the left ideal $ C e _ {M} $ and acts there by left translation: $ \rho ( s) x = s x $( $ s \in C ^ {+} $, $ x \in C e _ {M} $). Furthermore, the mapping $ x \mapsto x e _ {M} $ defines an isomorphism of vector spaces $ C _ {L} \rightarrow C e _ {M} $ that enables one to realize the spinor representation in $ C _ {L} $, which is naturally isomorphic to the exterior algebra over $ L $. The half-spinor representations $ \rho ^ \prime $ and $ \rho ^ {\prime\prime} $ are realized in the $ 2 ^ {m-} 1 $- dimensional subspaces $ C _ {L} \cap C ^ {+} $ and $ C _ {L} \cap C ^ {-} $.

If $ n $ is odd, then $ V $ can be imbedded in the $ ( n + 1 ) $- dimensional vector space $ V _ {1} = V \oplus k \epsilon $ over $ k $. One defines a quadratic form $ Q _ {1} $ on $ V _ {1} $ by putting $ Q _ {1} ( v + \epsilon ) = Q ( v) - \lambda ^ {2} $ for all $ v \in V $ and $ \lambda \in k $. $ Q _ {1} $ is a non-degenerate quadratic form of maximal Witt index defined over $ k $ on the even-dimensional vector space $ V _ {1} $. The spinor representation of $ C ^ {+} ( Q) $( or of $ \mathop{\rm Spin} _ {n} ( Q) $) is obtained by restricting any of the half-spinor representations of $ C ^ {+} ( Q _ {1} ) $( or of $ \mathop{\rm Spin} _ {n+} 1 ( Q _ {1} ) $) to the subalgebra $ C ^ {+} ( Q) $( or $ \mathop{\rm Spin} _ {n} ( Q) $, respectively).

The problem of classifying spinors has been solved when $ 3 \leq n \leq 14 $ and $ k $ is an algebraically closed field of characteristic 0 (see [4], [8], [9]). The problem consists of the following: 1) describe the orbits of $ \rho ( \mathop{\rm Spin} _ {n} ) $ in the spinor space by giving a representative of each orbit; 2) calculate the stabilizers in $ \mathop{\rm Spin} _ {n} $ of each of these representatives; and 3) describe the algebra of invariants of the linear group $ \rho ( \mathop{\rm Spin} _ {n} ) $.

The existence of spinor and half-spinor representations of the Lie algebra $ \mathfrak s \mathfrak p _ {n} $ of $ \mathop{\rm Spin} _ {n} $ was discovered by E. Cartan in 1913, when he classified the finite-dimensional representations of simple Lie algebras [6]. In 1935, R. Brauer and H. Weyl described spinor and half-spinor representations in terms of Clifford algebras [5]. P. Dirac [3] showed how spinors could be used in quantum mechanics to describe the rotation of an electron.

References

[1] N. Bourbaki, "Algèbre" , Eléments de mathématiques , Hermann (1970) pp. Chapt. II. Algèbre linéaire MR0274237 Zbl 0211.02401
[2] H. Weyl, "Classical groups, their invariants and representations" , Princeton Univ. Press (1946) (Translated from German) MR0000255 Zbl 1024.20502
[3] P.A.M. Dirac, "Principles of quantum mechanics" , Clarendon Press (1958) MR2303789 MR0116921 MR0023198 MR1522388 Zbl 0080.22005
[4] V.L. Popov, "Classification of spinors of dimension fourteen" Trans. Moscow Math. Soc. , 1 (1980) pp. 181–232 Trudy Moskov. Mat. Obshch. , 37 (1978) pp. 173–217 MR0514331 Zbl 0443.20038
[5] R. Brauer, H. Weyl, "Spinors in -dimensions" Amer. J. Math. , 57 : 2 (1935) pp. 425–449 MR1507084
[6] E. Cartan, "Les groupes projectifs qui ne laissant invariante aucune multiplicité plane" Bull. Soc. Math. France , 41 (1913) pp. 53–96
[7] C. Chevalley, "The algebraic theory of spinors" , Columbia Univ. Press (1954) MR0060497 Zbl 0057.25901
[8] V. Gatti, E. Viniberghi, "Spinors in -dimensional space" Adv. Math. , 30 : 2 (1978) pp. 137–155
[9] J.I. Igusa, "A classification of spinors up to dimension twelve" Amer. J. Math. , 92 : 4 (1970) pp. 997–1028 MR0277558 Zbl 0217.36203
How to Cite This Entry:
Spinor representation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spinor_representation&oldid=48780
This article was adapted from an original article by V.L. Popov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article