Namespaces
Variants
Actions

Difference between revisions of "Spectral semi-invariant"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
s0864801.png
 +
$#A+1 = 39 n = 0
 +
$#C+1 = 39 : ~/encyclopedia/old_files/data/S086/S.0806480 Spectral semi\AAhinvariant,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''spectral cumulant''
 
''spectral cumulant''
  
One of the characteristics of a [[Stationary stochastic process|stationary stochastic process]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s0864801.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s0864802.png" />, be a real stationary stochastic process for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s0864803.png" />. The semi-invariants (cf. [[Semi-invariant(2)|Semi-invariant]]) of this process,
+
One of the characteristics of a [[Stationary stochastic process|stationary stochastic process]]. Let $  X ( t) $,
 +
$  - \infty < t < \infty $,  
 +
be a real stationary stochastic process for which $  {\mathsf E} | X ( t) |  ^ {n} \leq  C < \infty $.  
 +
The semi-invariants (cf. [[Semi-invariant(2)|Semi-invariant]]) of this process,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s0864804.png" /></td> </tr></table>
+
$$
 +
S  ^ {(} n) ( t _ {1} \dots t _ {n} )  = \
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s0864805.png" /></td> </tr></table>
+
$$
 +
\left . =
 +
\frac{i  ^ {-} n \partial  ^ {n} }{\partial  u _ {1} \dots
 +
\partial  u _ {n} }
 +
  \mathop{\rm log}  {\mathsf E} e ^ {i ( u _ {1} X
 +
( t _ {1} ) + \dots + u _ {n} X ( t _ {n} ) )
 +
} \right | _ {u _ {1}  = \dots = u _ {n} = 0 } ,
 +
$$
  
 
are connected with the moments
 
are connected with the moments
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s0864806.png" /></td> </tr></table>
+
$$
 +
M  ^ {(} n) ( t _ {1} \dots t _ {n} )  = \
 +
{\mathsf E} \{ X ( t _ {1} ) \dots X ( t _ {n} ) \}
 +
$$
  
 
by the relations
 
by the relations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s0864807.png" /></td> </tr></table>
+
$$
 +
S  ^ {(} n) ( I)  = \sum _ {\cup _ {p=} 1  ^ {q} I _ {p} = I }
 +
( - 1 )  ^ {q-} 1
 +
( q - 1 ) ! \prod _ { p= } 1 ^ { q }  M  ^ {(} p) ( I _ {p} ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s0864808.png" /></td> </tr></table>
+
$$
 +
M  ^ {(} n) ( I)  = \sum _ {\cup _ {p=} 1  ^ {q} I _ {p} =
 +
I }  \prod _ { p= } 1 ^ { q }  S  ^ {(} p) ( I _ {p} ) ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s0864809.png" /></td> </tr></table>
+
$$
 +
= ( t _ {1} \dots t _ {n} ) ,\ \
 +
I _ {p}  = ( t _ {i _ {1}  } \dots t _ {i _ {p}  } )  \subseteq  I ,
 +
$$
  
and the summation is over all partitions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648010.png" /> into disjoint subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648011.png" />. It is said that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648012.png" /> if, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648013.png" />, there is a complex measure of bounded variation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648014.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648015.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648016.png" />,
+
and the summation is over all partitions of $  I $
 +
into disjoint subsets $  I _ {p} $.  
 +
It is said that $  X ( t) \in \Phi  ^ {(} n) $
 +
if, for all $  1 \leq  k \leq  n $,  
 +
there is a complex measure of bounded variation $  M  ^ {(} k) $
 +
on $  \mathbf R  ^ {k} $
 +
such that for all $  t _ {1} \dots t _ {n} $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648017.png" /></td> </tr></table>
+
$$
 +
M  ^ {(} k) ( t _ {1} \dots t _ {k} )  = \
 +
\int\limits _ {\mathbf R  ^ {k} } e ^ {i
 +
( t _ {1} \lambda _ {1} + \dots + t _ {k} \lambda _ {k} ) } M  ^ {(} k)
 +
( d \lambda _ {1} \dots d \lambda _ {k} ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648018.png" /></td> </tr></table>
+
$$
 +
= \
 +
\int\limits _ {\mathbf R  ^ {k} } e ^ {i ( t , \lambda ) } M  ^ {(} k) ( d \lambda ) .
 +
$$
  
A measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648019.png" />, defined on a system of Borel sets, is called a spectral semi-invariant if, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648020.png" />,
+
A measure $  F ^ { ( n) } $,  
 +
defined on a system of Borel sets, is called a spectral semi-invariant if, for all $  t _ {1} \dots t _ {n} $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648021.png" /></td> </tr></table>
+
$$
 +
S  ^ {(} n) ( t _ {1} \dots t _ {n} )  = \
 +
\int\limits _ {\mathbf R  ^ {n} }
 +
e ^ {i ( t , \lambda ) } F ^ { ( n) } ( d \lambda ) .
 +
$$
  
The measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648022.png" /> exists and has bounded variation if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648023.png" />. In the case of a stationary process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648024.png" />, the semi-invariants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648025.png" /> are invariant under translation:
+
The measure $  F ^ { ( n) } $
 +
exists and has bounded variation if $  X ( t) \in \Phi  ^ {(} n) $.  
 +
In the case of a stationary process $  X ( t) $,  
 +
the semi-invariants $  S  ^ {(} n) ( t _ {1} \dots t _ {n} ) $
 +
are invariant under translation:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648026.png" /></td> </tr></table>
+
$$
 +
S  ^ {(} n) ( t _ {1} + \tau \dots t _ {n} +
 +
\tau )  = S  ^ {(} n) ( t _ {1} \dots t _ {n} ) ,
 +
$$
  
and the spectral measures <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648028.png" /> are concentrated on the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648029.png" />. If the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648030.png" /> is absolutely continuous with respect to Lebesgue measure on this manifold, then there is a [[Spectral density|spectral density]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648031.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648032.png" />, defined by the equations
+
and the spectral measures $  F ^ { ( n) } $
 +
and $  M  ^ {(} n) $
 +
are concentrated on the manifold $  \lambda _ {1} + \dots + \lambda _ {n} = 0 $.  
 +
If the measure $  F ^ { ( n) } $
 +
is absolutely continuous with respect to Lebesgue measure on this manifold, then there is a [[Spectral density|spectral density]] $  f _ {n} ( \lambda _ {1} \dots \lambda _ {n-} 1 ) $
 +
of order $  n $,  
 +
defined by the equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648033.png" /></td> </tr></table>
+
$$
 +
S  ^ {(} n) ( t _ {1} \dots t _ {n} )  = \
 +
\int\limits _ {\mathbf R  ^ {n-} 1 } e ^ {
 +
i ( \lambda _ {1} ( t _ {2} - t _ {1} ) +
 +
{} \dots + \lambda _ {n-} 1 ( t _ {n} - t _ {1} ) ) } \times
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648034.png" /></td> </tr></table>
+
$$
 +
\times
 +
f _ {n} ( \lambda _ {1} \dots \lambda _ {n-} 1 )  d \lambda ,
 +
$$
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648035.png" />. In the case of discrete time one must replace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648036.png" /> in all formulas above by the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648037.png" />-dimensional cube <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s08648039.png" />.
+
for all $  t _ {1} \dots t _ {n} $.  
 +
In the case of discrete time one must replace $  \mathbf R  ^ {(} k) $
 +
in all formulas above by the $  k $-
 +
dimensional cube $  - \pi \leq  \lambda _ {i} \leq  \pi $,  
 +
$  1 \leq  i \leq  k $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Yu.V. [Yu.V. Prokhorov] Prohorov,  Yu.A. Rozanov,  "Probability theory, basic concepts. Limit theorems, random processes" , Springer  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.P. Leonov,  "Some applications of higher semi-invariants to the theory of stationary stochastic processes" , Moscow  (1964)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Yu.V. [Yu.V. Prokhorov] Prohorov,  Yu.A. Rozanov,  "Probability theory, basic concepts. Limit theorems, random processes" , Springer  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.P. Leonov,  "Some applications of higher semi-invariants to the theory of stationary stochastic processes" , Moscow  (1964)  (In Russian)</TD></TR></table>

Revision as of 08:22, 6 June 2020


spectral cumulant

One of the characteristics of a stationary stochastic process. Let $ X ( t) $, $ - \infty < t < \infty $, be a real stationary stochastic process for which $ {\mathsf E} | X ( t) | ^ {n} \leq C < \infty $. The semi-invariants (cf. Semi-invariant) of this process,

$$ S ^ {(} n) ( t _ {1} \dots t _ {n} ) = \ $$

$$ \left . = \frac{i ^ {-} n \partial ^ {n} }{\partial u _ {1} \dots \partial u _ {n} } \mathop{\rm log} {\mathsf E} e ^ {i ( u _ {1} X ( t _ {1} ) + \dots + u _ {n} X ( t _ {n} ) ) } \right | _ {u _ {1} = \dots = u _ {n} = 0 } , $$

are connected with the moments

$$ M ^ {(} n) ( t _ {1} \dots t _ {n} ) = \ {\mathsf E} \{ X ( t _ {1} ) \dots X ( t _ {n} ) \} $$

by the relations

$$ S ^ {(} n) ( I) = \sum _ {\cup _ {p=} 1 ^ {q} I _ {p} = I } ( - 1 ) ^ {q-} 1 ( q - 1 ) ! \prod _ { p= } 1 ^ { q } M ^ {(} p) ( I _ {p} ) , $$

$$ M ^ {(} n) ( I) = \sum _ {\cup _ {p=} 1 ^ {q} I _ {p} = I } \prod _ { p= } 1 ^ { q } S ^ {(} p) ( I _ {p} ) , $$

where

$$ I = ( t _ {1} \dots t _ {n} ) ,\ \ I _ {p} = ( t _ {i _ {1} } \dots t _ {i _ {p} } ) \subseteq I , $$

and the summation is over all partitions of $ I $ into disjoint subsets $ I _ {p} $. It is said that $ X ( t) \in \Phi ^ {(} n) $ if, for all $ 1 \leq k \leq n $, there is a complex measure of bounded variation $ M ^ {(} k) $ on $ \mathbf R ^ {k} $ such that for all $ t _ {1} \dots t _ {n} $,

$$ M ^ {(} k) ( t _ {1} \dots t _ {k} ) = \ \int\limits _ {\mathbf R ^ {k} } e ^ {i ( t _ {1} \lambda _ {1} + \dots + t _ {k} \lambda _ {k} ) } M ^ {(} k) ( d \lambda _ {1} \dots d \lambda _ {k} ) = $$

$$ = \ \int\limits _ {\mathbf R ^ {k} } e ^ {i ( t , \lambda ) } M ^ {(} k) ( d \lambda ) . $$

A measure $ F ^ { ( n) } $, defined on a system of Borel sets, is called a spectral semi-invariant if, for all $ t _ {1} \dots t _ {n} $,

$$ S ^ {(} n) ( t _ {1} \dots t _ {n} ) = \ \int\limits _ {\mathbf R ^ {n} } e ^ {i ( t , \lambda ) } F ^ { ( n) } ( d \lambda ) . $$

The measure $ F ^ { ( n) } $ exists and has bounded variation if $ X ( t) \in \Phi ^ {(} n) $. In the case of a stationary process $ X ( t) $, the semi-invariants $ S ^ {(} n) ( t _ {1} \dots t _ {n} ) $ are invariant under translation:

$$ S ^ {(} n) ( t _ {1} + \tau \dots t _ {n} + \tau ) = S ^ {(} n) ( t _ {1} \dots t _ {n} ) , $$

and the spectral measures $ F ^ { ( n) } $ and $ M ^ {(} n) $ are concentrated on the manifold $ \lambda _ {1} + \dots + \lambda _ {n} = 0 $. If the measure $ F ^ { ( n) } $ is absolutely continuous with respect to Lebesgue measure on this manifold, then there is a spectral density $ f _ {n} ( \lambda _ {1} \dots \lambda _ {n-} 1 ) $ of order $ n $, defined by the equations

$$ S ^ {(} n) ( t _ {1} \dots t _ {n} ) = \ \int\limits _ {\mathbf R ^ {n-} 1 } e ^ { i ( \lambda _ {1} ( t _ {2} - t _ {1} ) + {} \dots + \lambda _ {n-} 1 ( t _ {n} - t _ {1} ) ) } \times $$

$$ \times f _ {n} ( \lambda _ {1} \dots \lambda _ {n-} 1 ) d \lambda , $$

for all $ t _ {1} \dots t _ {n} $. In the case of discrete time one must replace $ \mathbf R ^ {(} k) $ in all formulas above by the $ k $- dimensional cube $ - \pi \leq \lambda _ {i} \leq \pi $, $ 1 \leq i \leq k $.

References

[1] Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian)
[2] V.P. Leonov, "Some applications of higher semi-invariants to the theory of stationary stochastic processes" , Moscow (1964) (In Russian)
How to Cite This Entry:
Spectral semi-invariant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spectral_semi-invariant&oldid=48762
This article was adapted from an original article by I.G. Zhurbenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article