Difference between revisions of "Spectral density"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | ''of a stationary stochastic process or of a homogeneous random field in | + | <!-- |
+ | s0863701.png | ||
+ | $#A+1 = 35 n = 0 | ||
+ | $#C+1 = 35 : ~/encyclopedia/old_files/data/S086/S.0806370 Spectral density | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | ''of a stationary stochastic process or of a homogeneous random field in $ n $- | ||
+ | dimensional space'' | ||
The [[Fourier transform|Fourier transform]] of the covariance function of a stochastic process which is stationary in the wide sense (cf. [[Stationary stochastic process|Stationary stochastic process]]; [[Random field, homogeneous|Random field, homogeneous]]). Stationary stochastic processes and homogeneous random fields for which the Fourier transform of the covariance function exists are called processes with a spectral density. | The [[Fourier transform|Fourier transform]] of the covariance function of a stochastic process which is stationary in the wide sense (cf. [[Stationary stochastic process|Stationary stochastic process]]; [[Random field, homogeneous|Random field, homogeneous]]). Stationary stochastic processes and homogeneous random fields for which the Fourier transform of the covariance function exists are called processes with a spectral density. | ||
Line 5: | Line 18: | ||
Let | Let | ||
− | + | $$ | |
+ | X ( t) = \{ X _ {k} ( t) \} _ {k=} 1 ^ {n} | ||
+ | $$ | ||
− | be an | + | be an $ n $- |
+ | dimensional stationary stochastic process, and let | ||
− | + | $$ | |
+ | X ( t) = \int\limits e ^ {i t \lambda } \Phi ( d \lambda ) ,\ \Phi = \ | ||
+ | \{ \Phi _ {k} \} _ {k=} 1 ^ {n} | ||
+ | $$ | ||
− | be its spectral representation ( | + | be its spectral representation ( $ \Phi _ {k} $ |
+ | is the [[Spectral measure|spectral measure]] corresponding to the $ k $- | ||
+ | th component $ X _ {k} ( t) $ | ||
+ | of the multi-dimensional stochastic process $ X ( t) $). | ||
+ | The range of integration is $ - \pi \leq \lambda \leq \pi $ | ||
+ | in the case of discrete time $ t $, | ||
+ | and $ - \infty < \lambda < + \infty $ | ||
+ | in the case of continuous time $ t $. | ||
+ | The process $ X ( t) $ | ||
+ | has a spectral density | ||
− | + | $$ | |
+ | f ( \lambda ) = \{ f _ {k,l} ( \lambda ) \} _ {k,l=} 1 ^ {n} , | ||
+ | $$ | ||
if all the elements | if all the elements | ||
− | + | $$ | |
+ | F _ {k,l} ( \Delta ) = {\mathsf E} | ||
+ | \Phi _ {k} ( \Delta ) \overline{ {\Phi _ {l} ( \Delta ) }}\; ,\ \ | ||
+ | k , l = {1 \dots n } , | ||
+ | $$ | ||
− | of the spectral measure | + | of the spectral measure $ F = \{ F _ {k,l} \} _ {k,l=} 1 ^ {n} $ |
+ | are absolutely continuous and if | ||
− | + | $$ | |
+ | f _ {k,l} ( \lambda ) = \ | ||
+ | |||
+ | \frac{F _ {k,l} ( d \lambda ) }{d \lambda } | ||
+ | . | ||
+ | $$ | ||
In particular, if the relation | In particular, if the relation | ||
− | + | $$ | |
+ | \sum _ {l = - \infty } ^ \infty | ||
+ | | B _ {k,l} ( t) | < \infty ,\ \ | ||
+ | k , l = {1 \dots n } , | ||
+ | $$ | ||
+ | |||
+ | holds for $ X ( t) $, | ||
+ | $ t = 0 , \pm 1 \dots $ | ||
+ | where | ||
+ | |||
+ | $$ | ||
+ | B ( t) = \{ B _ {k,l} ( t) \} _ {k,l=} 1 ^ {n} = \ | ||
+ | \{ {\mathsf E} X _ {k} ( t + s ) | ||
+ | \overline{ {X _ {l} ( s) }}\; \} _ {k,l=} 1 ^ {n} | ||
+ | $$ | ||
− | + | is the covariance function of $ X ( t) $, | |
+ | then $ X ( t) $ | ||
+ | has a spectral density and | ||
− | + | $$ | |
+ | f _ {k,l} ( \lambda ) = ( 2 \pi ) ^ {-} 1 | ||
+ | \sum _ {t = - \infty } ^ \infty | ||
+ | B _ {k,l} ( t) \mathop{\rm exp} \{ - i \lambda t \} , | ||
+ | $$ | ||
− | + | $$ | |
+ | - \infty < \lambda < \infty ,\ k , l = {1 \dots n } . | ||
+ | $$ | ||
− | + | The situation is similar in the case of processes $ X ( t) $ | |
+ | in continuous time $ t $. | ||
+ | The spectral density $ f ( \lambda ) $ | ||
+ | is sometimes called the second-order spectral density, in contrast to higher spectral densities (see [[Spectral semi-invariant|Spectral semi-invariant]]). | ||
− | + | A homogeneous $ n $- | |
+ | dimensional random field $ X ( t _ {1} \dots t _ {n} ) $ | ||
+ | has a spectral density $ f ( \lambda _ {1} \dots \lambda _ {n} ) $ | ||
+ | if its [[Spectral resolution|spectral resolution]] $ F ( \lambda _ {1} \dots \lambda _ {n} ) $ | ||
+ | possesses the property that its mixed derivative $ \partial ^ {n} F / \partial \lambda _ {1} \dots \partial \lambda _ {n} $ | ||
+ | exists almost-everywhere, and then | ||
− | + | $$ | |
+ | f ( \lambda _ {1} \dots \lambda _ {n} ) = \ | ||
− | + | \frac{\partial ^ {n} F }{\partial \lambda _ {1} \dots \partial \lambda _ {n} } | |
− | + | $$ | |
and | and | ||
− | + | $$ | |
+ | F ( \lambda _ {1} \dots \lambda _ {n} ) = \ | ||
+ | \int\limits _ { \lambda _ {01} } ^ { {\lambda _ 1 } } \dots | ||
+ | \int\limits _ { \lambda _ {0n} } ^ { {\lambda _ n } } | ||
+ | f ( \mu _ {1} \dots \mu _ {n} ) \ | ||
+ | d \mu _ {1} \dots d \mu _ {n} + \textrm{ const } . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> Yu.A. Rozanov, "Stationary random processes" , Holden-Day (1967) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> Yu.A. Rozanov, "Stationary random processes" , Holden-Day (1967) (Translated from Russian)</TD></TR></table> |
Revision as of 08:22, 6 June 2020
of a stationary stochastic process or of a homogeneous random field in $ n $-
dimensional space
The Fourier transform of the covariance function of a stochastic process which is stationary in the wide sense (cf. Stationary stochastic process; Random field, homogeneous). Stationary stochastic processes and homogeneous random fields for which the Fourier transform of the covariance function exists are called processes with a spectral density.
Let
$$ X ( t) = \{ X _ {k} ( t) \} _ {k=} 1 ^ {n} $$
be an $ n $- dimensional stationary stochastic process, and let
$$ X ( t) = \int\limits e ^ {i t \lambda } \Phi ( d \lambda ) ,\ \Phi = \ \{ \Phi _ {k} \} _ {k=} 1 ^ {n} $$
be its spectral representation ( $ \Phi _ {k} $ is the spectral measure corresponding to the $ k $- th component $ X _ {k} ( t) $ of the multi-dimensional stochastic process $ X ( t) $). The range of integration is $ - \pi \leq \lambda \leq \pi $ in the case of discrete time $ t $, and $ - \infty < \lambda < + \infty $ in the case of continuous time $ t $. The process $ X ( t) $ has a spectral density
$$ f ( \lambda ) = \{ f _ {k,l} ( \lambda ) \} _ {k,l=} 1 ^ {n} , $$
if all the elements
$$ F _ {k,l} ( \Delta ) = {\mathsf E} \Phi _ {k} ( \Delta ) \overline{ {\Phi _ {l} ( \Delta ) }}\; ,\ \ k , l = {1 \dots n } , $$
of the spectral measure $ F = \{ F _ {k,l} \} _ {k,l=} 1 ^ {n} $ are absolutely continuous and if
$$ f _ {k,l} ( \lambda ) = \ \frac{F _ {k,l} ( d \lambda ) }{d \lambda } . $$
In particular, if the relation
$$ \sum _ {l = - \infty } ^ \infty | B _ {k,l} ( t) | < \infty ,\ \ k , l = {1 \dots n } , $$
holds for $ X ( t) $, $ t = 0 , \pm 1 \dots $ where
$$ B ( t) = \{ B _ {k,l} ( t) \} _ {k,l=} 1 ^ {n} = \ \{ {\mathsf E} X _ {k} ( t + s ) \overline{ {X _ {l} ( s) }}\; \} _ {k,l=} 1 ^ {n} $$
is the covariance function of $ X ( t) $, then $ X ( t) $ has a spectral density and
$$ f _ {k,l} ( \lambda ) = ( 2 \pi ) ^ {-} 1 \sum _ {t = - \infty } ^ \infty B _ {k,l} ( t) \mathop{\rm exp} \{ - i \lambda t \} , $$
$$ - \infty < \lambda < \infty ,\ k , l = {1 \dots n } . $$
The situation is similar in the case of processes $ X ( t) $ in continuous time $ t $. The spectral density $ f ( \lambda ) $ is sometimes called the second-order spectral density, in contrast to higher spectral densities (see Spectral semi-invariant).
A homogeneous $ n $- dimensional random field $ X ( t _ {1} \dots t _ {n} ) $ has a spectral density $ f ( \lambda _ {1} \dots \lambda _ {n} ) $ if its spectral resolution $ F ( \lambda _ {1} \dots \lambda _ {n} ) $ possesses the property that its mixed derivative $ \partial ^ {n} F / \partial \lambda _ {1} \dots \partial \lambda _ {n} $ exists almost-everywhere, and then
$$ f ( \lambda _ {1} \dots \lambda _ {n} ) = \ \frac{\partial ^ {n} F }{\partial \lambda _ {1} \dots \partial \lambda _ {n} } $$
and
$$ F ( \lambda _ {1} \dots \lambda _ {n} ) = \ \int\limits _ { \lambda _ {01} } ^ { {\lambda _ 1 } } \dots \int\limits _ { \lambda _ {0n} } ^ { {\lambda _ n } } f ( \mu _ {1} \dots \mu _ {n} ) \ d \mu _ {1} \dots d \mu _ {n} + \textrm{ const } . $$
References
[1] | Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian) |
[2] | Yu.A. Rozanov, "Stationary random processes" , Holden-Day (1967) (Translated from Russian) |
Spectral density. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spectral_density&oldid=48758