Namespaces
Variants
Actions

Difference between revisions of "Singular homology"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The [[Homology|homology]] of a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s0855601.png" /> defined using singular simplices in the same way as ordinary (simplicial) homology (and cohomology) of a polyhedron is defined using linear simplices. By a singular simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s0855602.png" /> one means a continuous mapping of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s0855603.png" />-dimensional [[Standard simplex|standard simplex]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s0855604.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s0855605.png" />; the image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s0855606.png" /> is usually called the support of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s0855607.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s0855608.png" />. Singular chains are formal linear combinations of singular simplices with coefficients in an Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s0855609.png" />. They form a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556010.png" /> which is isomorphic to the direct sum (over all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556011.png" />) of the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556012.png" />. Taken together, the chain groups form a singular chain complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556013.png" /> with boundary homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556014.png" /> given by
+
<!--
 +
s0855601.png
 +
$#A+1 = 68 n = 0
 +
$#C+1 = 68 : ~/encyclopedia/old_files/data/S085/S.0805560 Singular homology
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556015.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556016.png" /> is the composite with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556017.png" /> of the standard covering by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556018.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556019.png" />-th face of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556020.png" />. As usual, cycles and boundaries are those chains which belong to the kernel and image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556021.png" />, respectively. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556022.png" />-dimensional singular homology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556023.png" /> is defined as the quotient group of the group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556024.png" />-dimensional cycles by the subgroup of boundaries.
+
The [[Homology|homology]] of a topological space  $  X $
 +
defined using singular simplices in the same way as ordinary (simplicial) homology (and cohomology) of a polyhedron is defined using linear simplices. By a singular simplex  $  \sigma  ^ {n} $
 +
one means a continuous mapping of an  $  n $-
 +
dimensional [[Standard simplex|standard simplex]]  $  \Delta  ^ {n} $
 +
into  $  X $;
 +
the image of $  \sigma  ^ {n} $
 +
is usually called the support of $  \sigma  ^ {n} $
 +
and is denoted by  $  | \sigma  ^ {n} | $.  
 +
Singular chains are formal linear combinations of singular simplices with coefficients in an Abelian group $  G $.  
 +
They form a group  $  S _ {n} ( X;  G) $
 +
which is isomorphic to the direct sum (over all  $  \sigma  ^ {n} $)
 +
of the groups  $  G _ {\sigma  ^ {n}  } = G $.
 +
Taken together, the chain groups form a singular chain complex  $  S _ {*} ( X;  G) $
 +
with boundary homomorphism  $  \partial  : S _ {n} ( X;  G) \rightarrow S _ {n - 1 }  ( X;  G) $
 +
given by
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556025.png" />, then the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556026.png" /> are defined using the subcomplex of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556027.png" /> consisting of all chains with supports in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556028.png" />, and groups of a pair, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556029.png" />, by using the corresponding quotient complex. There is an exact homology sequence
+
$$
 +
\partial  \sigma  ^ {n}  = \sum _ { i } (- 1)  ^ {i} \sigma _ {i} ^ {n - 1 } ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556030.png" /></td> </tr></table>
+
where  $  \sigma _ {i} ^ {n - 1 } $
 +
is the composite with  $  \sigma  ^ {n} $
 +
of the standard covering by  $  \Delta ^ {n - 1 } $
 +
of the  $  i $-
 +
th face of  $  \Delta  ^ {n} $.  
 +
As usual, cycles and boundaries are those chains which belong to the kernel and image of  $  \partial  ^ {n} $,
 +
respectively. The  $  n $-
 +
dimensional singular homology group  $  H _ {n}  ^ {s} ( X;  G) $
 +
is defined as the quotient group of the group of  $  n $-
 +
dimensional cycles by the subgroup of boundaries.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556031.png" /></td> </tr></table>
+
If  $  A \subset  X $,
 +
then the groups  $  H _ {n}  ^ {s} ( A; G) $
 +
are defined using the subcomplex of  $  S _ {*} ( X; G) $
 +
consisting of all chains with supports in  $  A $,
 +
and groups of a pair,  $  H _ {n}  ^ {s} ( X, A; G) $,
 +
by using the corresponding quotient complex. There is an exact homology sequence
  
which is a covariant functor on the category of pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556032.png" /> of topological spaces and their continuous mappings.
+
$$
 +
{} \dots \rightarrow  H _ {n}  ^ {s} ( A;  G)  \rightarrow \
 +
H _ {n}  ^ {s} ( X;  G)  \rightarrow \
 +
H _ {n}  ^ {s} ( X, A;  G)  \mathop \rightarrow \limits ^  \delta 
 +
$$
  
The homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556033.png" /> is defined as the boundary in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556034.png" /> of a cycle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556035.png" /> representing the corresponding element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556036.png" />. Singular homology is homology with compact supports, in the sense that the groups associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556037.png" /> are equal to the direct limits of the homology groups of the compact sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556038.png" />.
+
$$
 +
\mathop \rightarrow \limits ^  \delta    H _ {n - 1 }  ^ {s} ( A;  G)  \rightarrow \dots ,
 +
$$
  
Singular cohomology is defined in a dual way. The cochain complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556039.png" /> is defined as the complex of homomorphisms into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556040.png" /> of the integral singular chain complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556041.png" />. Less formally, cochains are functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556042.png" /> defined on singular simplices and taking values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556043.png" />, and the co-boundary homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556044.png" /> is given by
+
which is a covariant functor on the category of pairs  $  ( X, A) $
 +
of topological spaces and their continuous mappings.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556045.png" /></td> </tr></table>
+
The homomorphism  $  \delta $
 +
is defined as the boundary in  $  X $
 +
of a cycle of  $  ( X, A) $
 +
representing the corresponding element of  $  H _ {n}  ^ {s} ( X, A; G) $.  
 +
Singular homology is homology with compact supports, in the sense that the groups associated with  $  X $
 +
are equal to the direct limits of the homology groups of the compact sets  $  C \subset  X $.
  
The singular cohomology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556046.png" /> is the quotient group of the group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556047.png" />-dimensional cocycles (the kernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556048.png" />) by the subgroup of coboundaries (the image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556049.png" />). The cochain groups of a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556050.png" /> are defined by using the restriction of the cochain groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556051.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556052.png" />, while the cohomology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556053.png" /> of a pair are defined by using the cohomology of the subcomplex of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556054.png" /> consisting of all cochains which vanish on the singular simplices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556055.png" />. There is an exact sequence
+
Singular cohomology is defined in a dual way. The cochain complex  $  S  ^ {*} ( X;  G) $
 +
is defined as the complex of homomorphisms into  $  G $
 +
of the integral singular chain complex  $  S _ {*} ( X;  \mathbf Z ) $.  
 +
Less formally, cochains are functions  $  \xi $
 +
defined on singular simplices and taking values in  $  G $,
 +
and the co-boundary homomorphism  $  d $
 +
is given by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556056.png" /></td> </tr></table>
+
$$
 +
( d \xi ) ( \sigma ^ {n + 1 } )  = \
 +
\sum _ { i } (- 1)  ^ {i} \xi ( \sigma _ {i}  ^ {n+} 1 ).
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556057.png" /></td> </tr></table>
+
The singular cohomology group  $  H _ {s}  ^ {n} ( X; G) $
 +
is the quotient group of the group of  $  n $-
 +
dimensional cocycles (the kernel of  $  d $)
 +
by the subgroup of coboundaries (the image of  $  d $).
 +
The cochain groups of a subspace  $  A $
 +
are defined by using the restriction of the cochain groups  $  S  ^ {*} ( X; G) $
 +
to  $  A $,
 +
while the cohomology groups  $  H _ {s}  ^ {n} ( X, A;  G) $
 +
of a pair are defined by using the cohomology of the subcomplex of  $  S  ^ {*} ( X;  G) $
 +
consisting of all cochains which vanish on the singular simplices of  $  A $.  
 +
There is an exact sequence
  
which is a contravariant functor of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556058.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556059.png" /> is defined as the coboundary in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556060.png" /> of a cocycle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556061.png" /> representing the corresponding element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556062.png" />.
+
$$
 +
{} \dots \rightarrow  H _ {s}  ^ {n} ( X, A;  G)  \rightarrow \
 +
H _ {s}  ^ {n} ( X;  G)  \rightarrow \
 +
H _ {s}  ^ {n} ( A;  G)  \mathop \rightarrow \limits ^  \delta  \
 +
$$
  
Homology and cohomology groups with coefficients in an arbitrary group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556063.png" /> can be expressed in terms of integral homology and cohomology groups using universal coefficient formulas. In the case of cohomology, this formula is valid only when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556064.png" /> is finitely generated.
+
$$
 +
  \mathop \rightarrow \limits ^  \delta    H _ {s} ^ {n + 1 } ( X, A;  G)  \rightarrow \dots ,
 +
$$
 +
 
 +
which is a contravariant functor of  $  ( X, A) $.
 +
The mapping  $  \delta $
 +
is defined as the coboundary in  $  X $
 +
of a cocycle of  $  A $
 +
representing the corresponding element of  $  H _ {s}  ^ {n} ( A;  G) $.
 +
 
 +
Homology and cohomology groups with coefficients in an arbitrary group $  G $
 +
can be expressed in terms of integral homology and cohomology groups using universal coefficient formulas. In the case of cohomology, this formula is valid only when $  G $
 +
is finitely generated.
  
 
In the category of polyhedra, the singular theory is equivalent to the simplicial (and also the cellular) theory. This fact is commonly used to establish the topological invariance of the latter. However, the importance of the singular homology groups is not limited to this. Being defined in a simple way, they are applicable to a fairly wide category of topological spaces and are homotopy invariants. The natural connections with homotopy theory make the singular theory indispensable to homotopical topology.
 
In the category of polyhedra, the singular theory is equivalent to the simplicial (and also the cellular) theory. This fact is commonly used to establish the topological invariance of the latter. However, the importance of the singular homology groups is not limited to this. Being defined in a simple way, they are applicable to a fairly wide category of topological spaces and are homotopy invariants. The natural connections with homotopy theory make the singular theory indispensable to homotopical topology.
  
However, although singular homology groups are defined for all topological spaces without any restriction, their application is only justified under such restrictions as local contractibility or homological local connectedness. Singular chains, being by their nature  "too"  linearly connected, do not carry information about  "continuous"  cycles if the latter are not  "sufficiently"  linearly connected. There are other possible  "anomalies"  (for example, the homology groups of a compact subspace of Euclidean space can differ from zero in arbitrarily high dimensions, the homology and cohomology groups of a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556065.png" /> can be mapped non-isomorphically under the natural mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556066.png" /> onto the quotient space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556067.png" /> corresponding to a closed subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s08556068.png" />, etc.). Therefore, in general categories of topological spaces one also uses the corresponding Aleksandrov–Čech cohomology and its associated homology (cf. [[Aleksandrov–Čech homology and cohomology|Aleksandrov–Čech homology and cohomology]]). These theories are free from the above deficiencies and coincide with the singular one, at least in every case when its application does not raise problems.
+
However, although singular homology groups are defined for all topological spaces without any restriction, their application is only justified under such restrictions as local contractibility or homological local connectedness. Singular chains, being by their nature  "too"  linearly connected, do not carry information about  "continuous"  cycles if the latter are not  "sufficiently"  linearly connected. There are other possible  "anomalies"  (for example, the homology groups of a compact subspace of Euclidean space can differ from zero in arbitrarily high dimensions, the homology and cohomology groups of a pair $  ( X, A) $
 +
can be mapped non-isomorphically under the natural mapping from $  X $
 +
onto the quotient space $  X/A $
 +
corresponding to a closed subset $  A \subset  X $,  
 +
etc.). Therefore, in general categories of topological spaces one also uses the corresponding Aleksandrov–Čech cohomology and its associated homology (cf. [[Aleksandrov–Čech homology and cohomology|Aleksandrov–Čech homology and cohomology]]). These theories are free from the above deficiencies and coincide with the singular one, at least in every case when its application does not raise problems.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Dold,  "Lectures on algebraic topology" , Springer  (1972)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W.S. Massey,  "Homology and cohomology theory" , M. Dekker  (1978)  pp. Chapts. 8; 9</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E.G. Sklyarenko,  "On homology theory associated with the Aleksandrov–Čech cohomology"  ''Russian Math. Surveys'' , '''34''' :  6  (1979)  pp. 103–137  ''Uspekhi Mat. Nauk.'' , '''34''' :  6  (1979)  pp. 90–118</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  W.S. Massey,  "Singular homology theory" , Springer  (1980)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  E.G. Sklyarenko,  "Homology and cohomology of general spaces" , Springer  (Forthcoming)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Dold,  "Lectures on algebraic topology" , Springer  (1972)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W.S. Massey,  "Homology and cohomology theory" , M. Dekker  (1978)  pp. Chapts. 8; 9</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E.G. Sklyarenko,  "On homology theory associated with the Aleksandrov–Čech cohomology"  ''Russian Math. Surveys'' , '''34''' :  6  (1979)  pp. 103–137  ''Uspekhi Mat. Nauk.'' , '''34''' :  6  (1979)  pp. 90–118</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  W.S. Massey,  "Singular homology theory" , Springer  (1980)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  E.G. Sklyarenko,  "Homology and cohomology of general spaces" , Springer  (Forthcoming)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.M. Switzer,  "Algebraic topology - homotopy and homology" , Springer  (1975)  pp. Chapt. 10</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E.H. Spanier,  "Algebraic topology" , McGraw-Hill  (1966)  pp. Sects. 4.4; 5.4</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.M. Switzer,  "Algebraic topology - homotopy and homology" , Springer  (1975)  pp. Chapt. 10</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E.H. Spanier,  "Algebraic topology" , McGraw-Hill  (1966)  pp. Sects. 4.4; 5.4</TD></TR></table>

Latest revision as of 08:14, 6 June 2020


The homology of a topological space $ X $ defined using singular simplices in the same way as ordinary (simplicial) homology (and cohomology) of a polyhedron is defined using linear simplices. By a singular simplex $ \sigma ^ {n} $ one means a continuous mapping of an $ n $- dimensional standard simplex $ \Delta ^ {n} $ into $ X $; the image of $ \sigma ^ {n} $ is usually called the support of $ \sigma ^ {n} $ and is denoted by $ | \sigma ^ {n} | $. Singular chains are formal linear combinations of singular simplices with coefficients in an Abelian group $ G $. They form a group $ S _ {n} ( X; G) $ which is isomorphic to the direct sum (over all $ \sigma ^ {n} $) of the groups $ G _ {\sigma ^ {n} } = G $. Taken together, the chain groups form a singular chain complex $ S _ {*} ( X; G) $ with boundary homomorphism $ \partial : S _ {n} ( X; G) \rightarrow S _ {n - 1 } ( X; G) $ given by

$$ \partial \sigma ^ {n} = \sum _ { i } (- 1) ^ {i} \sigma _ {i} ^ {n - 1 } , $$

where $ \sigma _ {i} ^ {n - 1 } $ is the composite with $ \sigma ^ {n} $ of the standard covering by $ \Delta ^ {n - 1 } $ of the $ i $- th face of $ \Delta ^ {n} $. As usual, cycles and boundaries are those chains which belong to the kernel and image of $ \partial ^ {n} $, respectively. The $ n $- dimensional singular homology group $ H _ {n} ^ {s} ( X; G) $ is defined as the quotient group of the group of $ n $- dimensional cycles by the subgroup of boundaries.

If $ A \subset X $, then the groups $ H _ {n} ^ {s} ( A; G) $ are defined using the subcomplex of $ S _ {*} ( X; G) $ consisting of all chains with supports in $ A $, and groups of a pair, $ H _ {n} ^ {s} ( X, A; G) $, by using the corresponding quotient complex. There is an exact homology sequence

$$ {} \dots \rightarrow H _ {n} ^ {s} ( A; G) \rightarrow \ H _ {n} ^ {s} ( X; G) \rightarrow \ H _ {n} ^ {s} ( X, A; G) \mathop \rightarrow \limits ^ \delta $$

$$ \mathop \rightarrow \limits ^ \delta H _ {n - 1 } ^ {s} ( A; G) \rightarrow \dots , $$

which is a covariant functor on the category of pairs $ ( X, A) $ of topological spaces and their continuous mappings.

The homomorphism $ \delta $ is defined as the boundary in $ X $ of a cycle of $ ( X, A) $ representing the corresponding element of $ H _ {n} ^ {s} ( X, A; G) $. Singular homology is homology with compact supports, in the sense that the groups associated with $ X $ are equal to the direct limits of the homology groups of the compact sets $ C \subset X $.

Singular cohomology is defined in a dual way. The cochain complex $ S ^ {*} ( X; G) $ is defined as the complex of homomorphisms into $ G $ of the integral singular chain complex $ S _ {*} ( X; \mathbf Z ) $. Less formally, cochains are functions $ \xi $ defined on singular simplices and taking values in $ G $, and the co-boundary homomorphism $ d $ is given by

$$ ( d \xi ) ( \sigma ^ {n + 1 } ) = \ \sum _ { i } (- 1) ^ {i} \xi ( \sigma _ {i} ^ {n+} 1 ). $$

The singular cohomology group $ H _ {s} ^ {n} ( X; G) $ is the quotient group of the group of $ n $- dimensional cocycles (the kernel of $ d $) by the subgroup of coboundaries (the image of $ d $). The cochain groups of a subspace $ A $ are defined by using the restriction of the cochain groups $ S ^ {*} ( X; G) $ to $ A $, while the cohomology groups $ H _ {s} ^ {n} ( X, A; G) $ of a pair are defined by using the cohomology of the subcomplex of $ S ^ {*} ( X; G) $ consisting of all cochains which vanish on the singular simplices of $ A $. There is an exact sequence

$$ {} \dots \rightarrow H _ {s} ^ {n} ( X, A; G) \rightarrow \ H _ {s} ^ {n} ( X; G) \rightarrow \ H _ {s} ^ {n} ( A; G) \mathop \rightarrow \limits ^ \delta \ $$

$$ \mathop \rightarrow \limits ^ \delta H _ {s} ^ {n + 1 } ( X, A; G) \rightarrow \dots , $$

which is a contravariant functor of $ ( X, A) $. The mapping $ \delta $ is defined as the coboundary in $ X $ of a cocycle of $ A $ representing the corresponding element of $ H _ {s} ^ {n} ( A; G) $.

Homology and cohomology groups with coefficients in an arbitrary group $ G $ can be expressed in terms of integral homology and cohomology groups using universal coefficient formulas. In the case of cohomology, this formula is valid only when $ G $ is finitely generated.

In the category of polyhedra, the singular theory is equivalent to the simplicial (and also the cellular) theory. This fact is commonly used to establish the topological invariance of the latter. However, the importance of the singular homology groups is not limited to this. Being defined in a simple way, they are applicable to a fairly wide category of topological spaces and are homotopy invariants. The natural connections with homotopy theory make the singular theory indispensable to homotopical topology.

However, although singular homology groups are defined for all topological spaces without any restriction, their application is only justified under such restrictions as local contractibility or homological local connectedness. Singular chains, being by their nature "too" linearly connected, do not carry information about "continuous" cycles if the latter are not "sufficiently" linearly connected. There are other possible "anomalies" (for example, the homology groups of a compact subspace of Euclidean space can differ from zero in arbitrarily high dimensions, the homology and cohomology groups of a pair $ ( X, A) $ can be mapped non-isomorphically under the natural mapping from $ X $ onto the quotient space $ X/A $ corresponding to a closed subset $ A \subset X $, etc.). Therefore, in general categories of topological spaces one also uses the corresponding Aleksandrov–Čech cohomology and its associated homology (cf. Aleksandrov–Čech homology and cohomology). These theories are free from the above deficiencies and coincide with the singular one, at least in every case when its application does not raise problems.

References

[1] A. Dold, "Lectures on algebraic topology" , Springer (1972)
[2] W.S. Massey, "Homology and cohomology theory" , M. Dekker (1978) pp. Chapts. 8; 9
[3] E.G. Sklyarenko, "On homology theory associated with the Aleksandrov–Čech cohomology" Russian Math. Surveys , 34 : 6 (1979) pp. 103–137 Uspekhi Mat. Nauk. , 34 : 6 (1979) pp. 90–118
[4] W.S. Massey, "Singular homology theory" , Springer (1980)
[5] E.G. Sklyarenko, "Homology and cohomology of general spaces" , Springer (Forthcoming) (Translated from Russian)

Comments

References

[a1] R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. Chapt. 10
[a2] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) pp. Sects. 4.4; 5.4
How to Cite This Entry:
Singular homology. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Singular_homology&oldid=48718
This article was adapted from an original article by E.G. Sklyarenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article