Namespaces
Variants
Actions

Difference between revisions of "Sine amplitude"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
s0854901.png
 +
$#A+1 = 10 n = 0
 +
$#C+1 = 10 : ~/encyclopedia/old_files/data/S085/S.0805490 Sine amplitude,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''elliptic sine''
 
''elliptic sine''
  
 
One of the three basic [[Jacobi elliptic functions|Jacobi elliptic functions]], written as
 
One of the three basic [[Jacobi elliptic functions|Jacobi elliptic functions]], written as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085490/s0854901.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm sn}  u  =   \mathop{\rm sn} ( u, k)  = \sin  \mathop{\rm am}  u .
 +
$$
  
 
The sine amplitude can be defined by theta-functions or by means of a series in the following way:
 
The sine amplitude can be defined by theta-functions or by means of a series in the following way:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085490/s0854902.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm sn}  u  =   \mathop{\rm sn} ( u, k)  = \
 +
 
 +
\frac{\theta _ {3} ( 0) }{\theta _ {2}  ^  \prime  ( 0) }
 +
 
 +
\frac{\theta _ {1} ( v) }{\theta _ {0} ( v) }
 +
=
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085490/s0854903.png" /></td> </tr></table>
+
$$
 +
= \
 +
u - ( 1 + k  ^ {2} )
 +
\frac{u  ^ {3} }{3! }
 +
+ ( 1 +
 +
14k  ^ {2} + k  ^ {4} )
 +
\frac{u  ^ {5} }{5! }
 +
- \dots ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085490/s0854904.png" /> is the modulus of the sine amplitude (usually <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085490/s0854905.png" />) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085490/s0854906.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085490/s0854907.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085490/s0854908.png" />, respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085490/s0854909.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085490/s08549010.png" />.
+
where $  k $
 +
is the modulus of the sine amplitude (usually 0 \leq  k \leq  1 $)  
 +
and $  v = u/2 \omega $,  
 +
$  2 \omega = \pi \theta _ {3}  ^ {2} ( 0) $.  
 +
When $  k = 0, 1 $,
 +
respectively, $  \mathop{\rm sn} ( u, 0) = \sin  u $,
 +
$  \mathop{\rm sn} ( u, 1) = \mathop{\rm tanh}  u $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Hurwitz,  R. Courant,  "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''2''' , Springer  (1964)  pp. Chapt. 3</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Hurwitz,  R. Courant,  "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''2''' , Springer  (1964)  pp. Chapt. 3</TD></TR></table>

Latest revision as of 08:14, 6 June 2020


elliptic sine

One of the three basic Jacobi elliptic functions, written as

$$ \mathop{\rm sn} u = \mathop{\rm sn} ( u, k) = \sin \mathop{\rm am} u . $$

The sine amplitude can be defined by theta-functions or by means of a series in the following way:

$$ \mathop{\rm sn} u = \mathop{\rm sn} ( u, k) = \ \frac{\theta _ {3} ( 0) }{\theta _ {2} ^ \prime ( 0) } \frac{\theta _ {1} ( v) }{\theta _ {0} ( v) } = $$

$$ = \ u - ( 1 + k ^ {2} ) \frac{u ^ {3} }{3! } + ( 1 + 14k ^ {2} + k ^ {4} ) \frac{u ^ {5} }{5! } - \dots , $$

where $ k $ is the modulus of the sine amplitude (usually $ 0 \leq k \leq 1 $) and $ v = u/2 \omega $, $ 2 \omega = \pi \theta _ {3} ^ {2} ( 0) $. When $ k = 0, 1 $, respectively, $ \mathop{\rm sn} ( u, 0) = \sin u $, $ \mathop{\rm sn} ( u, 1) = \mathop{\rm tanh} u $.

References

[1] A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , 2 , Springer (1964) pp. Chapt. 3
How to Cite This Entry:
Sine amplitude. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sine_amplitude&oldid=48716
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article