Difference between revisions of "Signorini problem"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s1101301.png | ||
+ | $#A+1 = 30 n = 0 | ||
+ | $#C+1 = 30 : ~/encyclopedia/old_files/data/S110/S.1100130 Signorini problem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Given an open subset $ \Omega $ | |
+ | of $ \mathbf R ^ {3} $ | ||
+ | with smooth boundary $ \partial \Omega $ | ||
+ | and $ f $ | ||
+ | an $ L _ {2} ( \Omega ) $ | ||
+ | function, the Signorini problem consists in finding a function $ u $ | ||
+ | on $ \Omega $ | ||
+ | that is a solution to the following boundary value problem: | ||
− | + | $$ | |
+ | Au = f \textrm{ in } \Omega ; | ||
+ | $$ | ||
− | + | $$ | |
+ | u \geq 0, { | ||
+ | \frac{\partial u }{\partial \nu } | ||
+ | } \geq 0, u { | ||
+ | \frac{\partial u }{\partial \nu } | ||
+ | } = 0 \textrm{ on } \partial \Omega. | ||
+ | $$ | ||
− | + | Here, $ A $ | |
+ | is a second-order linear and symmetric elliptic operator on $ \Omega $( | ||
+ | in particular, $ A $ | ||
+ | can be equal to $ \Delta $, | ||
+ | the [[Laplace operator|Laplace operator]]) and $ \partial / {\partial \nu } $ | ||
+ | is the outward normal derivative to $ \Omega $ | ||
+ | corresponding to $ A $. | ||
+ | This problem, introduced by A. Signorini [[#References|[a5]]] and studied first by G. Fichera [[#References|[a3]]], describes the mathematical model for the deformation of an elastic body whose boundary is in unilateral contact with another elastic body (the static case). In this case $ u = u ( x ) $ | ||
+ | is the field of displacements and $ {\partial u } / {\partial \nu } $ | ||
+ | is the normal stress (see [[#References|[a2]]]). In the Signorini problem, the boundary conditions can be equivalently expressed as: | ||
− | + | $$ | |
+ | { | ||
+ | \frac{\partial u }{\partial \nu } | ||
+ | } ,u \geq 0 \textrm{ on } \partial \Omega; | ||
+ | $$ | ||
− | + | $$ | |
+ | u = 0 \textrm{ on } \Gamma, | ||
+ | $$ | ||
− | + | $$ | |
+ | { | ||
+ | \frac{\partial u }{\partial \nu } | ||
+ | } = 0 \textrm{ on } \partial \Omega \setminus \Gamma, | ||
+ | $$ | ||
− | + | where $ \Gamma $ | |
+ | is an unknown part of $ \partial \Omega $. | ||
+ | Thus, the Signorini problem can be viewed as a problem with free boundary, and a weak formulation of the problem is given by the variational inequality [[#References|[a4]]]: | ||
− | where | + | $$ |
+ | u \in K ; | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | a ( u,u - v ) \geq \int\limits _ \Omega f ( u - v ) dx, \forall v \in K \setminus 0, | ||
+ | $$ | ||
+ | |||
+ | where $ a $ | ||
+ | is the Dirichlet bilinear form associated to $ A $ | ||
+ | and $ K = \{ {u \in H ^ {1} ( \Omega ) } : {u \geq 0 \textrm{ on } \partial \Omega } \} $. | ||
+ | Here, $ H ^ {1} ( \Omega ) $ | ||
+ | is the usual [[Sobolev space|Sobolev space]] on $ \Omega $. | ||
+ | In this way the existence and uniqueness of a weak solution to the Signorini problem follows from the general theory of elliptic variational inequalities (see [[#References|[a1]]], [[#References|[a4]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Brezis, "Inéquations variationelles" ''J. Math. Pures Appl.'' , '''51''' (1972) pp. 1–168</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Duvaut, J.L. Lions, "Inequalities in mechanics and physics" , Springer (1976)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Fichera, "Problemi elastostatici con vincoli unilaterali e il problema di Signorini con ambigue condizioni al contorno" ''Memoirs Acad. Naz. Lincei'' , '''8''' (1964) pp. 91–140</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J.L. Lions, G. Stampacchia, "Variational inequalities" ''Comm. Pure Appl. Math.'' , '''XX''' (1967) pp. 493–519</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A. Signorini, "Questioni di elastostatica linearizzata e semilinearizzata" ''Rend. Mat. Appl.'' , '''XVIII''' (1959)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Brezis, "Inéquations variationelles" ''J. Math. Pures Appl.'' , '''51''' (1972) pp. 1–168</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Duvaut, J.L. Lions, "Inequalities in mechanics and physics" , Springer (1976)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Fichera, "Problemi elastostatici con vincoli unilaterali e il problema di Signorini con ambigue condizioni al contorno" ''Memoirs Acad. Naz. Lincei'' , '''8''' (1964) pp. 91–140</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J.L. Lions, G. Stampacchia, "Variational inequalities" ''Comm. Pure Appl. Math.'' , '''XX''' (1967) pp. 493–519</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A. Signorini, "Questioni di elastostatica linearizzata e semilinearizzata" ''Rend. Mat. Appl.'' , '''XVIII''' (1959)</TD></TR></table> |
Latest revision as of 08:13, 6 June 2020
Given an open subset $ \Omega $
of $ \mathbf R ^ {3} $
with smooth boundary $ \partial \Omega $
and $ f $
an $ L _ {2} ( \Omega ) $
function, the Signorini problem consists in finding a function $ u $
on $ \Omega $
that is a solution to the following boundary value problem:
$$ Au = f \textrm{ in } \Omega ; $$
$$ u \geq 0, { \frac{\partial u }{\partial \nu } } \geq 0, u { \frac{\partial u }{\partial \nu } } = 0 \textrm{ on } \partial \Omega. $$
Here, $ A $ is a second-order linear and symmetric elliptic operator on $ \Omega $( in particular, $ A $ can be equal to $ \Delta $, the Laplace operator) and $ \partial / {\partial \nu } $ is the outward normal derivative to $ \Omega $ corresponding to $ A $. This problem, introduced by A. Signorini [a5] and studied first by G. Fichera [a3], describes the mathematical model for the deformation of an elastic body whose boundary is in unilateral contact with another elastic body (the static case). In this case $ u = u ( x ) $ is the field of displacements and $ {\partial u } / {\partial \nu } $ is the normal stress (see [a2]). In the Signorini problem, the boundary conditions can be equivalently expressed as:
$$ { \frac{\partial u }{\partial \nu } } ,u \geq 0 \textrm{ on } \partial \Omega; $$
$$ u = 0 \textrm{ on } \Gamma, $$
$$ { \frac{\partial u }{\partial \nu } } = 0 \textrm{ on } \partial \Omega \setminus \Gamma, $$
where $ \Gamma $ is an unknown part of $ \partial \Omega $. Thus, the Signorini problem can be viewed as a problem with free boundary, and a weak formulation of the problem is given by the variational inequality [a4]:
$$ u \in K ; $$
$$ a ( u,u - v ) \geq \int\limits _ \Omega f ( u - v ) dx, \forall v \in K \setminus 0, $$
where $ a $ is the Dirichlet bilinear form associated to $ A $ and $ K = \{ {u \in H ^ {1} ( \Omega ) } : {u \geq 0 \textrm{ on } \partial \Omega } \} $. Here, $ H ^ {1} ( \Omega ) $ is the usual Sobolev space on $ \Omega $. In this way the existence and uniqueness of a weak solution to the Signorini problem follows from the general theory of elliptic variational inequalities (see [a1], [a4]).
References
[a1] | H. Brezis, "Inéquations variationelles" J. Math. Pures Appl. , 51 (1972) pp. 1–168 |
[a2] | G. Duvaut, J.L. Lions, "Inequalities in mechanics and physics" , Springer (1976) |
[a3] | G. Fichera, "Problemi elastostatici con vincoli unilaterali e il problema di Signorini con ambigue condizioni al contorno" Memoirs Acad. Naz. Lincei , 8 (1964) pp. 91–140 |
[a4] | J.L. Lions, G. Stampacchia, "Variational inequalities" Comm. Pure Appl. Math. , XX (1967) pp. 493–519 |
[a5] | A. Signorini, "Questioni di elastostatica linearizzata e semilinearizzata" Rend. Mat. Appl. , XVIII (1959) |
Signorini problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Signorini_problem&oldid=48698