Namespaces
Variants
Actions

Difference between revisions of "Significance test"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
One of the basic methods for statistical hypotheses testing (cf. [[Statistical hypotheses, verification of|Statistical hypotheses, verification of]]), used to confront the outcomes of observations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s0850801.png" />, interpreted as realizations of random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s0850802.png" />, with a hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s0850803.png" />. It is usually based on the observed value of a suitable statistic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s0850804.png" />, the specific form of which depends on the formulation of the problem. Generally speaking, the application of a significance test does not presuppose the availability of an alternative hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s0850805.png" />, to be accepted if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s0850806.png" /> is rejected; however, if some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s0850807.png" /> is specified, then, according to the general theory of statistical hypotheses testing, it is precisely <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s0850808.png" /> that determines the choice of the statistic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s0850809.png" />, the governing principle being to maximize the power of the test (cf. [[Power of a statistical test|Power of a statistical test]]).
+
<!--
 +
s0850801.png
 +
$#A+1 = 41 n = 0
 +
$#C+1 = 41 : ~/encyclopedia/old_files/data/S085/S.0805080 Significance test
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Significance tests are usually applied as follows. Having selected the test by choosing in advance a statistic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508010.png" /> and a significance level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508012.png" />, determine the [[Critical value|critical value]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508013.png" /> of the test by the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508014.png" />. According to the significance test with level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508015.png" />, the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508016.png" /> is rejected if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508017.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508018.png" />, the conclusion is that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508019.png" /> is not in disagreement with the observations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508020.png" />, at least as long as new observations do not oblige the experimenter to adopt a different point of view.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Example. A counter monitoring a [[Poisson process|Poisson process]] registers 150 pulses during the first hour, 117 pulses during the second. Can it be assumed on this basis that the pulse arrival rate per unit time is constant (hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508021.png" />)?
+
One of the basic methods for statistical hypotheses testing (cf. [[Statistical hypotheses, verification of|Statistical hypotheses, verification of]]), used to confront the outcomes of observations  $  x _ {1} \dots x _ {n} $,
 +
interpreted as realizations of random variables  $  X _ {1} \dots X _ {n} $,  
 +
with a hypothesis  $  H _ {0} $.
 +
It is usually based on the observed value of a suitable statistic  $  T = T ( X _ {1} \dots X _ {n} ) $,
 +
the specific form of which depends on the formulation of the problem. Generally speaking, the application of a significance test does not presuppose the availability of an alternative hypothesis  $  H _ {1} $,
 +
to be accepted if  $  H _ {0} $
 +
is rejected; however, if some  $  H _ {1} $
 +
is specified, then, according to the general theory of statistical hypotheses testing, it is precisely  $  H _ {1} $
 +
that determines the choice of the statistic  $  T $,
 +
the governing principle being to maximize the power of the test (cf. [[Power of a statistical test|Power of a statistical test]]).
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508022.png" /> is true, the observed values 150, 117 may be treated as realizations of two independent random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508024.png" /> obeying the same Poisson law with parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508025.png" />; the value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508026.png" /> is unknown. Since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508027.png" /> implies that the random variables
+
Significance tests are usually applied as follows. Having selected the test by choosing in advance a statistic  $  T ( X _ {1} \dots X _ {n} ) $
 +
and a significance level  $  \alpha $,  
 +
0 < \alpha < 0.5 $,
 +
determine the [[Critical value|critical value]]  $  t _  \alpha  $
 +
of the test by the condition  $  P \{ T \geq  t _  \alpha  \mid  H _ {0} \} = \alpha $.  
 +
According to the significance test with level  $  \alpha $,
 +
the hypothesis  $  H _ {0} $
 +
is rejected if  $  T ( x _ {1} \dots x _ {n} ) \geq  t _  \alpha  $.  
 +
If  $  T ( x _ {1} \dots x _ {n} ) < t _  \alpha  $,
 +
the conclusion is that  $  H _ {0} $
 +
is not in disagreement with the observations  $  x _ {1} \dots x _ {n} $,
 +
at least as long as new observations do not oblige the experimenter to adopt a different point of view.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508028.png" /></td> </tr></table>
+
Example. A counter monitoring a [[Poisson process|Poisson process]] registers 150 pulses during the first hour, 117 pulses during the second. Can it be assumed on this basis that the pulse arrival rate per unit time is constant (hypothesis  $  H _ {0} $)?
  
are approximately normally distributed with parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508029.png" />, it follows that the statistic
+
If  $  H _ {0} $
 +
is true, the observed values 150, 117 may be treated as realizations of two independent random variables  $  X _ {1} $
 +
and  $  X _ {2} $
 +
obeying the same Poisson law with parameter  $  \lambda $;
 +
the value of  $  \lambda $
 +
is unknown. Since  $  H _ {0} $
 +
implies that the random variables
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508030.png" /></td> </tr></table>
+
$$
 +
Y _ {1}  = \sqrt {4 X _ {1} + 1 } - 2 \sqrt \lambda \ 
 +
\textrm{ and } \  Y _ {2}  = \
 +
\sqrt {4 X _ {2} + 1 } - 2 \sqrt \lambda
 +
$$
 +
 
 +
are approximately normally distributed with parameters  $  ( 0 , 1) $,
 +
it follows that the statistic
 +
 
 +
$$
 +
X  ^ {2}  =
 +
\frac{1}{2}
 +
[ Y _ {1} - Y _ {2} ]  ^ {2}  =
 +
\frac{1}{2}
 +
[ \sqrt {4 X _ {1} + 1 } - \sqrt {4 X _ {2} + 1 } ]  ^ {2}
 +
$$
  
 
is approximately distributed according to a  "chi-squared"  law with one degree of freedom, i.e.
 
is approximately distributed according to a  "chi-squared"  law with one degree of freedom, i.e.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508031.png" /></td> </tr></table>
+
$$
 +
{\mathsf P} \{ X  ^ {2} > x \mid  H _ {0} \}  \approx  {\mathsf P} \{ \chi _ {1}  ^ {2}
 +
> x \} .
 +
$$
  
Tables of the  "chi-squared"  distribution yield the critical value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508032.png" /> for the prescribed significance level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508033.png" />, i.e.
+
Tables of the  "chi-squared"  distribution yield the critical value $  \chi _ {1}  ^ {2} ( 0.05 ) = 3.841 $
 +
for the prescribed significance level $  \alpha = 0.05 $,  
 +
i.e.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508034.png" /></td> </tr></table>
+
$$
 +
{\mathsf P} \{ \chi _ {1}  ^ {2} \geq  3.841 \}  = 0.05 .
 +
$$
  
Now, using the observed values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508036.png" />, one computes the value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508037.png" /> of the test statistic:
+
Now, using the observed values $  X _ {1} = 150 $
 +
and $  X _ {2} = 117 $,  
 +
one computes the value $  X  ^ {2} $
 +
of the test statistic:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508038.png" /></td> </tr></table>
+
$$
 +
X  ^ {2}  =
 +
\frac{1}{2}
 +
[ \sqrt {4 \cdot 150 + 1 } - \sqrt {4 \cdot 117 + 1 } ]  ^ {2}  = 4.087 .
 +
$$
  
Since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508039.png" />, it follows that the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508040.png" /> (constant pulse arrival rate) is rejected by the  "chi-squared"  test at significance level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085080/s08508041.png" />.
+
Since $  X  ^ {2} = 4.085 > \chi _ {1}  ^ {2} ( 0.05 ) = 3.841 $,  
 +
it follows that the hypothesis $  H _ {0} $(
 +
constant pulse arrival rate) is rejected by the  "chi-squared"  test at significance level $  \alpha = 0.05 $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Cramér,  "Mathematical methods of statistics" , Princeton Univ. Press  (1946)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.L. Lehmann,  "Testing statistical hypotheses" , Wiley  (1959)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N.V. Smirnov,  I.V. Dunin-Barkovskii,  "Mathematische Statistik in der Technik" , Deutsch. Verlag Wissenschaft.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  B.I. Devyatov,  "Limits of admissibility of normal approximations to the Poisson distribution"  ''Theor. Probab. Appl.'' , '''14''' :  1  (1969)  pp. 170–173  ''Teoriya Veroyatnost. i ee Primenen.'' , '''14''' :  1  (1969)  pp. 175–178</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Cramér,  "Mathematical methods of statistics" , Princeton Univ. Press  (1946)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.L. Lehmann,  "Testing statistical hypotheses" , Wiley  (1959)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N.V. Smirnov,  I.V. Dunin-Barkovskii,  "Mathematische Statistik in der Technik" , Deutsch. Verlag Wissenschaft.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  B.I. Devyatov,  "Limits of admissibility of normal approximations to the Poisson distribution"  ''Theor. Probab. Appl.'' , '''14''' :  1  (1969)  pp. 170–173  ''Teoriya Veroyatnost. i ee Primenen.'' , '''14''' :  1  (1969)  pp. 175–178</TD></TR></table>

Latest revision as of 08:13, 6 June 2020


One of the basic methods for statistical hypotheses testing (cf. Statistical hypotheses, verification of), used to confront the outcomes of observations $ x _ {1} \dots x _ {n} $, interpreted as realizations of random variables $ X _ {1} \dots X _ {n} $, with a hypothesis $ H _ {0} $. It is usually based on the observed value of a suitable statistic $ T = T ( X _ {1} \dots X _ {n} ) $, the specific form of which depends on the formulation of the problem. Generally speaking, the application of a significance test does not presuppose the availability of an alternative hypothesis $ H _ {1} $, to be accepted if $ H _ {0} $ is rejected; however, if some $ H _ {1} $ is specified, then, according to the general theory of statistical hypotheses testing, it is precisely $ H _ {1} $ that determines the choice of the statistic $ T $, the governing principle being to maximize the power of the test (cf. Power of a statistical test).

Significance tests are usually applied as follows. Having selected the test by choosing in advance a statistic $ T ( X _ {1} \dots X _ {n} ) $ and a significance level $ \alpha $, $ 0 < \alpha < 0.5 $, determine the critical value $ t _ \alpha $ of the test by the condition $ P \{ T \geq t _ \alpha \mid H _ {0} \} = \alpha $. According to the significance test with level $ \alpha $, the hypothesis $ H _ {0} $ is rejected if $ T ( x _ {1} \dots x _ {n} ) \geq t _ \alpha $. If $ T ( x _ {1} \dots x _ {n} ) < t _ \alpha $, the conclusion is that $ H _ {0} $ is not in disagreement with the observations $ x _ {1} \dots x _ {n} $, at least as long as new observations do not oblige the experimenter to adopt a different point of view.

Example. A counter monitoring a Poisson process registers 150 pulses during the first hour, 117 pulses during the second. Can it be assumed on this basis that the pulse arrival rate per unit time is constant (hypothesis $ H _ {0} $)?

If $ H _ {0} $ is true, the observed values 150, 117 may be treated as realizations of two independent random variables $ X _ {1} $ and $ X _ {2} $ obeying the same Poisson law with parameter $ \lambda $; the value of $ \lambda $ is unknown. Since $ H _ {0} $ implies that the random variables

$$ Y _ {1} = \sqrt {4 X _ {1} + 1 } - 2 \sqrt \lambda \ \textrm{ and } \ Y _ {2} = \ \sqrt {4 X _ {2} + 1 } - 2 \sqrt \lambda $$

are approximately normally distributed with parameters $ ( 0 , 1) $, it follows that the statistic

$$ X ^ {2} = \frac{1}{2} [ Y _ {1} - Y _ {2} ] ^ {2} = \frac{1}{2} [ \sqrt {4 X _ {1} + 1 } - \sqrt {4 X _ {2} + 1 } ] ^ {2} $$

is approximately distributed according to a "chi-squared" law with one degree of freedom, i.e.

$$ {\mathsf P} \{ X ^ {2} > x \mid H _ {0} \} \approx {\mathsf P} \{ \chi _ {1} ^ {2} > x \} . $$

Tables of the "chi-squared" distribution yield the critical value $ \chi _ {1} ^ {2} ( 0.05 ) = 3.841 $ for the prescribed significance level $ \alpha = 0.05 $, i.e.

$$ {\mathsf P} \{ \chi _ {1} ^ {2} \geq 3.841 \} = 0.05 . $$

Now, using the observed values $ X _ {1} = 150 $ and $ X _ {2} = 117 $, one computes the value $ X ^ {2} $ of the test statistic:

$$ X ^ {2} = \frac{1}{2} [ \sqrt {4 \cdot 150 + 1 } - \sqrt {4 \cdot 117 + 1 } ] ^ {2} = 4.087 . $$

Since $ X ^ {2} = 4.085 > \chi _ {1} ^ {2} ( 0.05 ) = 3.841 $, it follows that the hypothesis $ H _ {0} $( constant pulse arrival rate) is rejected by the "chi-squared" test at significance level $ \alpha = 0.05 $.

References

[1] H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946)
[2] E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1959)
[3] N.V. Smirnov, I.V. Dunin-Barkovskii, "Mathematische Statistik in der Technik" , Deutsch. Verlag Wissenschaft. (1969) (Translated from Russian)
[4] B.I. Devyatov, "Limits of admissibility of normal approximations to the Poisson distribution" Theor. Probab. Appl. , 14 : 1 (1969) pp. 170–173 Teoriya Veroyatnost. i ee Primenen. , 14 : 1 (1969) pp. 175–178
How to Cite This Entry:
Significance test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Significance_test&oldid=48696
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article