|
|
Line 1: |
Line 1: |
− | ''in the space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s0848202.png" />-dimensional polyhedral chains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s0848203.png" />''
| + | <!-- |
| + | s0848202.png |
| + | $#A+1 = 86 n = 0 |
| + | $#C+1 = 86 : ~/encyclopedia/old_files/data/S084/S.0804820 Sharp norm |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The largest semi-norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s0848204.png" /> which, for any cell <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s0848205.png" /> of volume <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s0848206.png" />, satisfies the inequalities
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s0848207.png" /></td> </tr></table>
| + | ''in the space of $ r $- |
| + | dimensional polyhedral chains $ C _ {r} ( E ^ {n)} $'' |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s0848208.png" /></td> </tr></table>
| + | The largest semi-norm $ {| \cdot | } ^ \prime $ |
| + | which, for any cell $ \sigma ^ {r} $ |
| + | of volume $ | \sigma ^ {r} | $, |
| + | satisfies the inequalities |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s0848209.png" /></td> </tr></table>
| + | $$ |
| + | {| \sigma ^ {r} | } ^ \prime \leq | \sigma ^ {r} | , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482010.png" /> is the cell obtained by shifting by a vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482011.png" /> of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482012.png" />.
| + | $$ |
| + | {| \partial \sigma ^ {r+} 1 | } ^ \prime \leq | \sigma ^ {r+} 1 | , |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482013.png" />, the sharp norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482014.png" /> is expressed as follows:
| + | $$ |
| + | {| T _ {v} \sigma ^ {r} - \sigma ^ {r} | } ^ \prime \leq |
| + | \frac{ |
| + | {| \sigma ^ {r} | } ^ \prime | v | }{r+} |
| + | 1 , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482015.png" /></td> </tr></table>
| + | where $ T _ {v} \sigma ^ {r} $ |
| + | is the cell obtained by shifting by a vector $ v $ |
| + | of length $ | v | $. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482016.png" /> is the [[Flat norm|flat norm]] of the chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482017.png" />, and the infimum is taken over all shifts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482018.png" />.
| + | If $ A = \sum a _ {i} \sigma _ {i} ^ {r} $, |
| + | the sharp norm $ | A | ^ \srp $ |
| + | is expressed as follows: |
| + | |
| + | $$ |
| + | | A | ^ \srp = \inf \left \{ |
| + | \frac{\sum | a _ {i} | | \sigma _ {i} ^ {r} | | v _ {i} | }{r+} |
| + | 1 + \left | |
| + | \sum a _ {i} T _ {v _ {i} } \sigma _ {i} ^ {r} \right | ^ \flt \right \} , |
| + | $$ |
| + | |
| + | where $ | C | ^ \flt $ |
| + | is the [[Flat norm|flat norm]] of the chain $ C $, |
| + | and the infimum is taken over all shifts $ v $. |
| | | |
| One has | | One has |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482019.png" /></td> </tr></table>
| + | $$ |
| + | | a A | ^ \srp = | a | | A | ^ \srp , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482020.png" /></td> </tr></table>
| + | $$ |
| + | | A + B | ^ \srp \leq | A | ^ \srp + | B | ^ \srp , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482021.png" /></td> </tr></table>
| + | $$ |
| + | | A | ^ \srp = 0 \iff A = 0 , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482022.png" /></td> </tr></table>
| + | $$ |
| + | | A | ^ \srp \leq | A | ^ \flt ; |
| + | $$ |
| | | |
− | if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482024.png" />. | + | if $ r = 0 $, |
| + | then $ | A | ^ \srp = | A | ^ \flt $. |
| | | |
− | The completion of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482025.png" /> is the separable Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482026.png" />, whose elements are known as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482027.png" />-dimensional sharp chains. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482028.png" />-dimensional polyhedral chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482029.png" /> and any vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482030.png" />, | + | The completion of the space $ C _ {r} ( E ^ {n} ) $ |
| + | is the separable Banach space $ C _ {r} ^ \srp ( E ^ {n} ) $, |
| + | whose elements are known as $ r $- |
| + | dimensional sharp chains. For any $ r $- |
| + | dimensional polyhedral chain $ A $ |
| + | and any vector $ v $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482031.png" /></td> </tr></table>
| + | $$ |
| + | | T _ {v} A - A | ^ \srp \leq |
| + | \frac{| A | | v | }{r+} |
| + | 1 , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482032.png" /> is the chain obtained by shifting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482033.png" /> by the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482034.png" /> of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482035.png" />. A flat chain of finite mass is a sharp chain; in general, any flat chain may also be considered as a sharp chain in the following sense: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482036.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482037.png" /> are polyhedral chains, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482038.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482039.png" /> is a linear bijective mapping from the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482040.png" /> into the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482041.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482042.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482043.png" /> in the sharp norm. | + | where $ T _ {v} A $ |
| + | is the chain obtained by shifting $ A $ |
| + | by the vector $ v $ |
| + | of length $ | v | $. |
| + | A flat chain of finite mass is a sharp chain; in general, any flat chain may also be considered as a sharp chain in the following sense: If $ A = \lim\limits ^ \flt A _ {i} $, |
| + | where $ A _ {i} $ |
| + | are polyhedral chains, and $ \psi A = \lim\limits ^ \srp A _ {i} $, |
| + | where $ \psi $ |
| + | is a linear bijective mapping from the space $ C _ {r} ^ \flt ( E ^ {n)} $ |
| + | into the space $ C _ {r} ^ \srp ( E ^ {n)} $, |
| + | and $ \psi C _ {r} ^ \flt $ |
| + | is dense in $ C _ {r} ^ \srp $ |
| + | in the sharp norm. |
| | | |
− | It is not possible to give a correct definition of the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482044.png" /> of a sharp chain [[#References|[1]]]; an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482045.png" />-dimensional sharp chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482046.png" /> is an element of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482047.png" /> dual to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482048.png" />; it is a flat cochain, and | + | It is not possible to give a correct definition of the boundary $ \partial A $ |
| + | of a sharp chain [[#References|[1]]]; an $ r $- |
| + | dimensional sharp chain $ X = XA $ |
| + | is an element of the space $ C ^ {\srp r } ( E ^ {n} ) $ |
| + | dual to $ C _ {r} ^ \srp ( E ^ {n} ) $; |
| + | it is a flat cochain, and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482049.png" /></td> </tr></table>
| + | $$ |
| + | | X | \leq | X | ^ \flt \leq | X | ^ \srp , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482050.png" /> is the co-mass of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482051.png" />, while the sharp co-norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482052.png" /> is defined similarly to the flat norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482053.png" />. The co-boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482054.png" /> of a sharp cochain is not necessarily sharp [[#References|[1]]], but | + | where $ | X | $ |
| + | is the co-mass of $ X $, |
| + | while the sharp co-norm $ | X | ^ \srp $ |
| + | is defined similarly to the flat norm $ | X | ^ \flt $. |
| + | The co-boundary $ dX $ |
| + | of a sharp cochain is not necessarily sharp [[#References|[1]]], but |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482055.png" /></td> </tr></table>
| + | $$ |
| + | | dX | \leq | X | ^ \flt \leq | X | ^ \srp . |
| + | $$ |
| | | |
− | The Lipschitz constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482056.png" /> of a cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482057.png" /> is defined as follows: | + | The Lipschitz constant $ {\mathcal L} ( X) $ |
| + | of a cochain $ X $ |
| + | is defined as follows: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482058.png" /></td> </tr></table>
| + | $$ |
| + | {\mathcal L} ( X) = \sup \left \{ |
| + | \frac{| X \cdot ( T _ {v} A - A ) | |
| + | }{| A | | v | } |
| + | \right \} , |
| + | $$ |
| | | |
− | where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482059.png" /> are polyhedral chains. For sharp cochains this supremum is finite, and | + | where the $ A $ |
| + | are polyhedral chains. For sharp cochains this supremum is finite, and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482060.png" /></td> </tr></table>
| + | $$ |
| + | ( r + 1 ) {\mathcal L} ( X) \leq | X | ^ \srp . |
| + | $$ |
| | | |
| Any flat cochain with a finite Lipschitz constant is sharp, and | | Any flat cochain with a finite Lipschitz constant is sharp, and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482061.png" /></td> </tr></table>
| + | $$ |
| + | | X | ^ \srp = \sup \{ | X | ^ \flt ,\ |
| + | ( r + 1 ) {\mathcal L} ( X) \} , |
| + | $$ |
| | | |
| and also | | and also |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482062.png" /></td> </tr></table>
| + | $$ |
| + | | dX | \leq ( r + 1 ) {\mathcal L} ( X) . |
| + | $$ |
| + | |
| + | Similar concepts are introduced for $ r $- |
| + | dimensional polyhedral chains in open subsets $ R \subset E ^ {n} $. |
| + | See also [[Sharp form|Sharp form]]. |
| | | |
− | Similar concepts are introduced for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482063.png" />-dimensional polyhedral chains in open subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482064.png" />. See also [[Sharp form|Sharp form]].
| + | The sharp norm in the space of additive functions $ \gamma $ |
| + | whose values are $ r $- |
| + | vectors is the largest of the semi-norms $ | \cdot | ^ \prime $ |
| + | which satisfy the conditions: |
| | | |
− | The sharp norm in the space of additive functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482065.png" /> whose values are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482067.png" />-vectors is the largest of the semi-norms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482068.png" /> which satisfy the conditions:
| + | $ | \gamma | ^ \prime \leq | \gamma | $, |
| + | where $ | \gamma | $ |
| + | is the complete variation of $ \gamma $; |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482069.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482070.png" /> is the complete variation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482071.png" />;
| + | $$ |
| + | | T _ {v} \gamma - \gamma | ^ \prime \leq \ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482072.png" /></td> </tr></table>
| + | \frac{| v | | \gamma | }{r+} |
| + | 1 , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482073.png" /> is the shift of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482074.png" /> by the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482075.png" /> of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482076.png" />: | + | where $ T _ {v} \gamma ( Q) = \gamma T _ {-} v ( Q) $ |
| + | is the shift of the function $ \gamma $ |
| + | by the vector $ v $ |
| + | of length $ | v | $: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482077.png" /></td> </tr></table>
| + | $$ |
| + | T _ {-} v ( Q) = \{ {q - v } : {q \in Q \subset E ^ {n} } \} |
| + | ; |
| + | $$ |
| | | |
− | for each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482078.png" /> and an arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482079.png" /> there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482080.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482081.png" /> if the support <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482082.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482083.png" />. | + | for each point $ p $ |
| + | and an arbitrary $ \epsilon $ |
| + | there exists an $ \eta > 0 $ |
| + | such that $ | \gamma | ^ \prime \leq \epsilon | \gamma | $ |
| + | if the support $ \supp t \gamma \subset U _ \eta ( p) $ |
| + | and $ \gamma ( E ^ {n)} = 0 $. |
| | | |
− | The sharp norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482084.png" /> is represented as follows: | + | The sharp norm $ | \gamma | ^ \srp $ |
| + | is represented as follows: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482085.png" /></td> </tr></table>
| + | $$ |
| + | | \gamma | ^ \srp = \sup _ \omega \int\limits _ {E ^ {n} |
| + | } \omega d \gamma , |
| + | $$ |
| | | |
− | where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482086.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482087.png" />-dimensional sharp forms for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084820/s08482088.png" />. | + | where the $ \omega $ |
| + | are $ r $- |
| + | dimensional sharp forms for which $ | \omega | ^ \srp \leq 1 $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Whitney, "Geometric integration theory" , Princeton Univ. Press (1957)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Whitney, "Geometric integration theory" , Princeton Univ. Press (1957)</TD></TR></table> |
in the space of $ r $-
dimensional polyhedral chains $ C _ {r} ( E ^ {n)} $
The largest semi-norm $ {| \cdot | } ^ \prime $
which, for any cell $ \sigma ^ {r} $
of volume $ | \sigma ^ {r} | $,
satisfies the inequalities
$$
{| \sigma ^ {r} | } ^ \prime \leq | \sigma ^ {r} | ,
$$
$$
{| \partial \sigma ^ {r+} 1 | } ^ \prime \leq | \sigma ^ {r+} 1 | ,
$$
$$
{| T _ {v} \sigma ^ {r} - \sigma ^ {r} | } ^ \prime \leq
\frac{
{| \sigma ^ {r} | } ^ \prime | v | }{r+}
1 ,
$$
where $ T _ {v} \sigma ^ {r} $
is the cell obtained by shifting by a vector $ v $
of length $ | v | $.
If $ A = \sum a _ {i} \sigma _ {i} ^ {r} $,
the sharp norm $ | A | ^ \srp $
is expressed as follows:
$$
| A | ^ \srp = \inf \left \{
\frac{\sum | a _ {i} | | \sigma _ {i} ^ {r} | | v _ {i} | }{r+}
1 + \left |
\sum a _ {i} T _ {v _ {i} } \sigma _ {i} ^ {r} \right | ^ \flt \right \} ,
$$
where $ | C | ^ \flt $
is the flat norm of the chain $ C $,
and the infimum is taken over all shifts $ v $.
One has
$$
| a A | ^ \srp = | a | | A | ^ \srp ,
$$
$$
| A + B | ^ \srp \leq | A | ^ \srp + | B | ^ \srp ,
$$
$$
| A | ^ \srp = 0 \iff A = 0 ,
$$
$$
| A | ^ \srp \leq | A | ^ \flt ;
$$
if $ r = 0 $,
then $ | A | ^ \srp = | A | ^ \flt $.
The completion of the space $ C _ {r} ( E ^ {n} ) $
is the separable Banach space $ C _ {r} ^ \srp ( E ^ {n} ) $,
whose elements are known as $ r $-
dimensional sharp chains. For any $ r $-
dimensional polyhedral chain $ A $
and any vector $ v $,
$$
| T _ {v} A - A | ^ \srp \leq
\frac{| A | | v | }{r+}
1 ,
$$
where $ T _ {v} A $
is the chain obtained by shifting $ A $
by the vector $ v $
of length $ | v | $.
A flat chain of finite mass is a sharp chain; in general, any flat chain may also be considered as a sharp chain in the following sense: If $ A = \lim\limits ^ \flt A _ {i} $,
where $ A _ {i} $
are polyhedral chains, and $ \psi A = \lim\limits ^ \srp A _ {i} $,
where $ \psi $
is a linear bijective mapping from the space $ C _ {r} ^ \flt ( E ^ {n)} $
into the space $ C _ {r} ^ \srp ( E ^ {n)} $,
and $ \psi C _ {r} ^ \flt $
is dense in $ C _ {r} ^ \srp $
in the sharp norm.
It is not possible to give a correct definition of the boundary $ \partial A $
of a sharp chain [1]; an $ r $-
dimensional sharp chain $ X = XA $
is an element of the space $ C ^ {\srp r } ( E ^ {n} ) $
dual to $ C _ {r} ^ \srp ( E ^ {n} ) $;
it is a flat cochain, and
$$
| X | \leq | X | ^ \flt \leq | X | ^ \srp ,
$$
where $ | X | $
is the co-mass of $ X $,
while the sharp co-norm $ | X | ^ \srp $
is defined similarly to the flat norm $ | X | ^ \flt $.
The co-boundary $ dX $
of a sharp cochain is not necessarily sharp [1], but
$$
| dX | \leq | X | ^ \flt \leq | X | ^ \srp .
$$
The Lipschitz constant $ {\mathcal L} ( X) $
of a cochain $ X $
is defined as follows:
$$
{\mathcal L} ( X) = \sup \left \{
\frac{| X \cdot ( T _ {v} A - A ) |
}{| A | | v | }
\right \} ,
$$
where the $ A $
are polyhedral chains. For sharp cochains this supremum is finite, and
$$
( r + 1 ) {\mathcal L} ( X) \leq | X | ^ \srp .
$$
Any flat cochain with a finite Lipschitz constant is sharp, and
$$
| X | ^ \srp = \sup \{ | X | ^ \flt ,\
( r + 1 ) {\mathcal L} ( X) \} ,
$$
and also
$$
| dX | \leq ( r + 1 ) {\mathcal L} ( X) .
$$
Similar concepts are introduced for $ r $-
dimensional polyhedral chains in open subsets $ R \subset E ^ {n} $.
See also Sharp form.
The sharp norm in the space of additive functions $ \gamma $
whose values are $ r $-
vectors is the largest of the semi-norms $ | \cdot | ^ \prime $
which satisfy the conditions:
$ | \gamma | ^ \prime \leq | \gamma | $,
where $ | \gamma | $
is the complete variation of $ \gamma $;
$$
| T _ {v} \gamma - \gamma | ^ \prime \leq \
\frac{| v | | \gamma | }{r+}
1 ,
$$
where $ T _ {v} \gamma ( Q) = \gamma T _ {-} v ( Q) $
is the shift of the function $ \gamma $
by the vector $ v $
of length $ | v | $:
$$
T _ {-} v ( Q) = \{ {q - v } : {q \in Q \subset E ^ {n} } \}
;
$$
for each point $ p $
and an arbitrary $ \epsilon $
there exists an $ \eta > 0 $
such that $ | \gamma | ^ \prime \leq \epsilon | \gamma | $
if the support $ \supp t \gamma \subset U _ \eta ( p) $
and $ \gamma ( E ^ {n)} = 0 $.
The sharp norm $ | \gamma | ^ \srp $
is represented as follows:
$$
| \gamma | ^ \srp = \sup _ \omega \int\limits _ {E ^ {n}
} \omega d \gamma ,
$$
where the $ \omega $
are $ r $-
dimensional sharp forms for which $ | \omega | ^ \srp \leq 1 $.
References
[1] | H. Whitney, "Geometric integration theory" , Princeton Univ. Press (1957) |