Difference between revisions of "Sharp form"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0848101.png | ||
+ | $#A+1 = 61 n = 0 | ||
+ | $#C+1 = 61 : ~/encyclopedia/old_files/data/S084/S.0804810 Sharp form | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An $ r $- | |
+ | dimensional [[Differential form|differential form]] $ \omega $ | ||
+ | on an open subset $ R \subset E ^ {n} $ | ||
+ | such that the co-mass (cf. [[Mass and co-mass|Mass and co-mass]]) $ | \omega | _ {0} $ | ||
+ | and the co-mass Lipschitz constant | ||
− | + | $$ | |
+ | {\mathcal L} _ {0} ( \omega ) = \sup | ||
+ | \frac{| \omega ( p) - \omega | ||
+ | ( q) | }{| p - q | } | ||
+ | , | ||
+ | $$ | ||
− | is | + | where $ p , q \in R $ |
+ | and $ | p - q | $ | ||
+ | is the length of the vector $ p - q $, | ||
+ | are finite. The number | ||
− | + | $$ | |
+ | | \omega | ^ \srp = \sup \{ | \omega | _ {0} ,\ | ||
+ | ( r + 1 ) {\mathcal L} _ {0} ( \omega ) \} | ||
+ | $$ | ||
− | + | is known as the sharp norm of the form $ \omega $. | |
− | + | Whitney's theorem. To each $ r $- | |
+ | dimensional sharp cochain $ X $ | ||
+ | in $ R $ | ||
+ | corresponds a unique $ r $- | ||
+ | dimensional sharp form $ \omega _ {X} $ | ||
+ | for which | ||
− | + | $$ | |
+ | X \sigma ^ {r} = \int\limits _ {\sigma ^ {r} } \omega _ {X} $$ | ||
− | + | for all $ r $- | |
+ | dimensional oriented simplices $ \sigma ^ {r} $; | ||
+ | $ \omega _ {X} ( p) $ | ||
+ | is defined by the formula | ||
− | + | $$ | |
+ | \omega _ {X} ( p) = \lim\limits | ||
+ | \frac{X \sigma _ {i} }{| \sigma _ {i} | } | ||
+ | , | ||
+ | $$ | ||
− | + | where $ \sigma _ {1} , \sigma _ {2} \dots $ | |
+ | is a sequence of simplices containing the point $ p $, | ||
+ | with diameters tending to zero, and lying in the same plane. This correspondence is a one-to-one mapping of the space of cochains $ C ^ {\srp r } ( R) $ | ||
+ | into the space $ \Omega ^ {\srp r } $ | ||
+ | of sharp forms; moreover: | ||
− | + | $ | \omega _ {X} | _ {0} = | X | $, | |
+ | i.e. the co-mass of $ X $; | ||
− | + | $ {\mathcal L} ( \omega _ {X} ) = {\mathcal L} ( X) $, | |
+ | i.e. the Lipschitz constant of $ X $; | ||
+ | |||
+ | $ | \omega _ {X} | ^ \srp = | X | ^ \srp $, | ||
+ | i.e. the [[Sharp norm|sharp norm]] of $ X $; | ||
+ | |||
+ | $ \Omega ^ {\srp r } $ | ||
+ | is a Banach space. | ||
In particular, there is a correspondence between zero-dimensional sharp cochains and sharp functions (bounded functions which satisfy a Lipschitz condition). | In particular, there is a correspondence between zero-dimensional sharp cochains and sharp functions (bounded functions which satisfy a Lipschitz condition). | ||
− | The space | + | The space $ C _ {r} ^ \srp ( R) $ |
+ | of $ r $- | ||
+ | dimensional sharp chains $ A $ | ||
+ | of finite [[Mass|mass]] $ | A | $ | ||
+ | with the sharp norm $ | A | ^ \srp $ | ||
+ | is isomorphic to the space $ \Gamma _ {r} ^ \srp ( E ^ {n} ) $ | ||
+ | of additive set functions whose values are $ r $- | ||
+ | vectors $ \gamma $, | ||
+ | provided with the sharp norm $ | \gamma | ^ \srp $; | ||
+ | this correspondence is defined by the formula: | ||
− | + | $$ \tag{* } | |
+ | X A = \int\limits _ {E ^ {n} } \omega _ {X} d {\gamma _ {A} } | ||
+ | = [ \omega \cdot \gamma ] ( E ^ {n} ) | ||
+ | $$ | ||
− | for any cochain | + | for any cochain $ X $, |
+ | where $ \omega _ {X} $ | ||
+ | is the $ r $- | ||
+ | dimensional sharp form corresponding to the cochain $ X $, | ||
+ | and | ||
− | + | $ \gamma _ {A} ( E ^ {n} ) = \{ A \} $, | |
+ | i.e. the covector of the chain $ A $; | ||
− | + | $ | A | = | \gamma _ {A} | $, | |
+ | i.e. the complete variation of $ \gamma _ {A} $; | ||
− | + | $ | \gamma _ {A} | ^ \srp = | A | ^ \srp $, | |
+ | i.e. the sharp norm of the chain $ A $. | ||
− | Thus, (*) is a generalization of the ordinary Lebesgue–Stieltjes integral. In particular, the Lebesgue-measurable summable function | + | Thus, (*) is a generalization of the ordinary Lebesgue–Stieltjes integral. In particular, the Lebesgue-measurable summable function $ \alpha ( p) $ |
+ | associated with $ A $( | ||
+ | cf. [[Flat form|Flat form]]), i.e. | ||
− | + | $$ | |
+ | X \cdot A = \int\limits _ {E ^ {n} } \omega _ {X} \cdot \alpha ( p) dp | ||
+ | $$ | ||
− | for any cochain | + | for any cochain $ X $, |
+ | exists for $ A $ | ||
+ | if and only if $ \gamma _ {A} $ | ||
+ | is absolutely continuous. | ||
− | If | + | If $ \omega _ {A} $ |
+ | is a regular form and $ X $ | ||
+ | is a sharp cochain, then there exists a form $ \omega _ {dX } = d \omega _ {X} $, | ||
+ | and Stokes' formula | ||
− | + | $$ | |
+ | \int\limits _ {\partial \sigma } \omega _ {X} = \int\limits _ \sigma d \omega | ||
+ | $$ | ||
applies. Other results established for regular forms can be generalized in an analogous manner. | applies. Other results established for regular forms can be generalized in an analogous manner. | ||
For references see [[Sharp norm|Sharp norm]]. | For references see [[Sharp norm|Sharp norm]]. |
Revision as of 08:13, 6 June 2020
An $ r $-
dimensional differential form $ \omega $
on an open subset $ R \subset E ^ {n} $
such that the co-mass (cf. Mass and co-mass) $ | \omega | _ {0} $
and the co-mass Lipschitz constant
$$ {\mathcal L} _ {0} ( \omega ) = \sup \frac{| \omega ( p) - \omega ( q) | }{| p - q | } , $$
where $ p , q \in R $ and $ | p - q | $ is the length of the vector $ p - q $, are finite. The number
$$ | \omega | ^ \srp = \sup \{ | \omega | _ {0} ,\ ( r + 1 ) {\mathcal L} _ {0} ( \omega ) \} $$
is known as the sharp norm of the form $ \omega $.
Whitney's theorem. To each $ r $- dimensional sharp cochain $ X $ in $ R $ corresponds a unique $ r $- dimensional sharp form $ \omega _ {X} $ for which
$$ X \sigma ^ {r} = \int\limits _ {\sigma ^ {r} } \omega _ {X} $$
for all $ r $- dimensional oriented simplices $ \sigma ^ {r} $; $ \omega _ {X} ( p) $ is defined by the formula
$$ \omega _ {X} ( p) = \lim\limits \frac{X \sigma _ {i} }{| \sigma _ {i} | } , $$
where $ \sigma _ {1} , \sigma _ {2} \dots $ is a sequence of simplices containing the point $ p $, with diameters tending to zero, and lying in the same plane. This correspondence is a one-to-one mapping of the space of cochains $ C ^ {\srp r } ( R) $ into the space $ \Omega ^ {\srp r } $ of sharp forms; moreover:
$ | \omega _ {X} | _ {0} = | X | $, i.e. the co-mass of $ X $;
$ {\mathcal L} ( \omega _ {X} ) = {\mathcal L} ( X) $, i.e. the Lipschitz constant of $ X $;
$ | \omega _ {X} | ^ \srp = | X | ^ \srp $, i.e. the sharp norm of $ X $;
$ \Omega ^ {\srp r } $ is a Banach space.
In particular, there is a correspondence between zero-dimensional sharp cochains and sharp functions (bounded functions which satisfy a Lipschitz condition).
The space $ C _ {r} ^ \srp ( R) $ of $ r $- dimensional sharp chains $ A $ of finite mass $ | A | $ with the sharp norm $ | A | ^ \srp $ is isomorphic to the space $ \Gamma _ {r} ^ \srp ( E ^ {n} ) $ of additive set functions whose values are $ r $- vectors $ \gamma $, provided with the sharp norm $ | \gamma | ^ \srp $; this correspondence is defined by the formula:
$$ \tag{* } X A = \int\limits _ {E ^ {n} } \omega _ {X} d {\gamma _ {A} } = [ \omega \cdot \gamma ] ( E ^ {n} ) $$
for any cochain $ X $, where $ \omega _ {X} $ is the $ r $- dimensional sharp form corresponding to the cochain $ X $, and
$ \gamma _ {A} ( E ^ {n} ) = \{ A \} $, i.e. the covector of the chain $ A $;
$ | A | = | \gamma _ {A} | $, i.e. the complete variation of $ \gamma _ {A} $;
$ | \gamma _ {A} | ^ \srp = | A | ^ \srp $, i.e. the sharp norm of the chain $ A $.
Thus, (*) is a generalization of the ordinary Lebesgue–Stieltjes integral. In particular, the Lebesgue-measurable summable function $ \alpha ( p) $ associated with $ A $( cf. Flat form), i.e.
$$ X \cdot A = \int\limits _ {E ^ {n} } \omega _ {X} \cdot \alpha ( p) dp $$
for any cochain $ X $, exists for $ A $ if and only if $ \gamma _ {A} $ is absolutely continuous.
If $ \omega _ {A} $ is a regular form and $ X $ is a sharp cochain, then there exists a form $ \omega _ {dX } = d \omega _ {X} $, and Stokes' formula
$$ \int\limits _ {\partial \sigma } \omega _ {X} = \int\limits _ \sigma d \omega $$
applies. Other results established for regular forms can be generalized in an analogous manner.
For references see Sharp norm.
Sharp form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sharp_form&oldid=48680