Namespaces
Variants
Actions

Difference between revisions of "Serial subgroup"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846601.png" /> be a subgroup of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846602.png" />. A series of subgroups between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846603.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846604.png" />, or, more briefly, a series between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846605.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846606.png" />, is a set of subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846607.png" />,
+
<!--
 +
s0846601.png
 +
$#A+1 = 33 n = 0
 +
$#C+1 = 33 : ~/encyclopedia/old_files/data/S084/S.0804660 Serial subgroup
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846608.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846609.png" /> is a linearly ordered set, such that
+
Let  $  H $
 +
be a subgroup of a group  $  G $.  
 +
A series of subgroups between  $  H $
 +
and  $  G $,
 +
or, more briefly, a series between  $  H $
 +
and  $  G $,
 +
is a set of subgroups of  $  G $,
  
i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466011.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466012.png" />;
+
$$
 +
= \{ {A _  \sigma  , B _  \sigma  } : {\sigma \in \Sigma
 +
} \}
 +
,
 +
$$
  
ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466013.png" />;
+
where  $  \Sigma $
 +
is a linearly ordered set, such that
  
iii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466014.png" /> is a normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466015.png" />;
+
i) $  H \subset  A _  \sigma  $,
 +
$  H \subset  B _  \sigma  $
 +
for all  $  \sigma \in \Sigma $;
  
iv) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466016.png" /> is a subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466017.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466018.png" />.
+
ii) $  G \setminus  H = \cup _  \sigma  ( B _  \sigma  \setminus  A _  \sigma  ) $;
  
It follows that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466019.png" />,
+
iii)  $  A _  \sigma  $
 +
is a normal subgroup of  $  B _  \sigma  $;
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466020.png" /></td> </tr></table>
+
iv)  $  B _  \tau  $
 +
is a subgroup of  $  A _  \sigma  $
 +
if  $  \tau < \sigma $.
 +
 
 +
It follows that for all  $  \tau < \sigma $,
 +
 
 +
$$
 +
A _  \tau  riangle\left  B _  \tau  \subset  A _  \sigma  riangle\left  B _  \sigma  \right .$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466021.png" /></td> </tr></table>
+
$$
 +
B _  \sigma  = \cap _ {\tau > \sigma } A _  \tau  ,\  A _  \sigma  = \cup _ {\tau < \sigma } B _  \tau  ,
 +
$$
  
and for a finite series, indexed by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466022.png" />, hence
+
and for a finite series, indexed by $  \{ 0 \dots n \} $,  
 +
hence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466023.png" /></td> </tr></table>
+
$$
 +
B _ {i}  = A _ {i+} 1 ,\  i = 0 \dots n- 1.
 +
$$
  
A subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466024.png" /> is called serial if there is a series of subgroups between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466026.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466027.png" /> is finite, a subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466028.png" /> is serial if and only if it is a [[Subnormal subgroup|subnormal subgroup]]. A subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466029.png" /> is called an ascendant subgroup in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466030.png" /> if there is an ascending series of subgroups between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466032.png" />, that is, a series whose index set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466033.png" /> is well-ordered.
+
A subgroup $  H $
 +
is called serial if there is a series of subgroups between $  H $
 +
and $  G $.  
 +
If $  G $
 +
is finite, a subgroup $  H $
 +
is serial if and only if it is a [[Subnormal subgroup|subnormal subgroup]]. A subgroup $  H $
 +
is called an ascendant subgroup in $  G $
 +
if there is an ascending series of subgroups between $  H $
 +
and $  G $,  
 +
that is, a series whose index set $  \Sigma $
 +
is well-ordered.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.J.S. Robinson,  "Finiteness condition and generalized soluble groups" , '''1''' , Springer  (1972)  pp. Chapt. 1</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.J.S. Robinson,  "Finiteness condition and generalized soluble groups" , '''1''' , Springer  (1972)  pp. Chapt. 1</TD></TR></table>

Revision as of 08:13, 6 June 2020


Let $ H $ be a subgroup of a group $ G $. A series of subgroups between $ H $ and $ G $, or, more briefly, a series between $ H $ and $ G $, is a set of subgroups of $ G $,

$$ S = \{ {A _ \sigma , B _ \sigma } : {\sigma \in \Sigma } \} , $$

where $ \Sigma $ is a linearly ordered set, such that

i) $ H \subset A _ \sigma $, $ H \subset B _ \sigma $ for all $ \sigma \in \Sigma $;

ii) $ G \setminus H = \cup _ \sigma ( B _ \sigma \setminus A _ \sigma ) $;

iii) $ A _ \sigma $ is a normal subgroup of $ B _ \sigma $;

iv) $ B _ \tau $ is a subgroup of $ A _ \sigma $ if $ \tau < \sigma $.

It follows that for all $ \tau < \sigma $,

$$ A _ \tau riangle\left B _ \tau \subset A _ \sigma riangle\left B _ \sigma \right .$$

and

$$ B _ \sigma = \cap _ {\tau > \sigma } A _ \tau ,\ A _ \sigma = \cup _ {\tau < \sigma } B _ \tau , $$

and for a finite series, indexed by $ \{ 0 \dots n \} $, hence

$$ B _ {i} = A _ {i+} 1 ,\ i = 0 \dots n- 1. $$

A subgroup $ H $ is called serial if there is a series of subgroups between $ H $ and $ G $. If $ G $ is finite, a subgroup $ H $ is serial if and only if it is a subnormal subgroup. A subgroup $ H $ is called an ascendant subgroup in $ G $ if there is an ascending series of subgroups between $ H $ and $ G $, that is, a series whose index set $ \Sigma $ is well-ordered.

References

[a1] D.J.S. Robinson, "Finiteness condition and generalized soluble groups" , 1 , Springer (1972) pp. Chapt. 1
How to Cite This Entry:
Serial subgroup. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Serial_subgroup&oldid=48677