Namespaces
Variants
Actions

Difference between revisions of "Semi-hyperbolic space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A projective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s0841701.png" />-space in which the metric is defined by a given absolute consisting of the following collection: a second-order real cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s0841702.png" /> of index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s0841703.png" /> with an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s0841704.png" />-plane vertex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s0841705.png" />; a real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s0841706.png" />-cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s0841707.png" /> of index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s0841708.png" /> with an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s0841709.png" />-plane vertex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417010.png" /> in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417011.png" />-plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417012.png" />;<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417013.png" />; a real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417014.png" />-cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417015.png" /> of index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417016.png" /> with an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417017.png" />-plane vertex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417018.png" />; and a non-degenerate real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417019.png" />-quadric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417020.png" /> of index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417021.png" /> in the plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417022.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417023.png" />. This is the definition of a semi-hyperbolic space with indices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417024.png" />; it is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417025.png" />.
+
<!--
 +
s0841701.png
 +
$#A+1 = 66 n = 0
 +
$#C+1 = 66 : ~/encyclopedia/old_files/data/S084/S.0804170 Semi\AAhhyperbolic space
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
If the cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417026.png" /> is a pair of merging planes, both identical with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417027.png" /> (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417028.png" />), the semi-hyperbolic plane with the improper plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417029.png" /> is called a [[Semi-Euclidean space|semi-Euclidean space]]:
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417030.png" /></td> </tr></table>
+
A projective  $  n $-
 +
space in which the metric is defined by a given absolute consisting of the following collection: a second-order real cone  $  Q _ {0} $
 +
of index  $  l _ {0} $
 +
with an  $  ( n - m _ {0} - 1 ) $-
 +
plane vertex  $  T _ {0} $;
 +
a real  $  ( n - m _ {0} - 2 ) $-
 +
cone  $  Q _ {1} $
 +
of index  $  l _ {1} $
 +
with an  $  ( n - m _ {1} - 1 ) $-
 +
plane vertex  $  T _ {1} $
 +
in the  $  ( n - m _ {0} - 1 ) $-
 +
plane  $  T _ {0} $;
 +
$  \dots $;
 +
a real  $  ( n - m _ {r-} 2 - 2 ) $-
 +
cone  $  Q _ {r-} 1 $
 +
of index  $  l _ {r-} 1 $
 +
with an  $  ( n - m _ {r-} 1 - 1 ) $-
 +
plane vertex  $  T _ {r-} 1 $;  
 +
and a non-degenerate real  $  ( n - m _ {r-} 1 - 2 ) $-
 +
quadric  $  Q _ {2} $
 +
of index  $  l _ {2} $
 +
in the plane  $  T _ {r-} 1 $;  
 +
$  0 \leq  m _ {0} < m _ {1} < \dots < m _ {r-} 1 < n $.
 +
This is the definition of a semi-hyperbolic space with indices  $  l _ {0} \dots l _ {r} $;
 +
it is denoted by  $  {} ^ {l _ {0} {} \dots l _ {r} } S _ {n} ^ {m _ {0} \dots m _ {r-} 1 } $.
  
The distance between two points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417032.png" /> is defined as a function of the position of the straight line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417033.png" /> relative to the planes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417034.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417035.png" /> does not intersect <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417036.png" />, the distance between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417038.png" /> is defined through a scalar product, in analogy with the appropriate definition in a [[Quasi-hyperbolic space|quasi-hyperbolic space]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417039.png" /> intersects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417040.png" /> but does not intersect <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417041.png" />, or it intersects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417042.png" /> but does not intersect <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417043.png" />, the distance between the points is defined as the scalar product with itself of the distance between the vectors of the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417045.png" />.
+
If the cone  $  Q _ {0} $
 +
is a pair of merging planes, both identical with  $  T _ {0} $(
 +
for  $  m _ {0} = 0 $),  
 +
the semi-hyperbolic plane with the improper plane  $  T _ {0} $
 +
is called a [[Semi-Euclidean space|semi-Euclidean space]]:
  
Depending on the position of the absolute relative to the planes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417046.png" /> one distinguishes four types of straight lines of different orders: elliptic, hyperbolic, isotropic, and parabolic.
+
$$
 +
{} ^ {l _ {1} \dots l _ {r} } R _ {n} ^ {m _ {1} \dots m _ {r-} 1 } .
 +
$$
 +
 
 +
The distance between two points  $  X $
 +
and  $  Y $
 +
is defined as a function of the position of the straight line  $  X Y $
 +
relative to the planes  $  T _ {0} \dots T _ {r-} 1 $.
 +
In particular, if  $  X X $
 +
does not intersect  $  T _ {0} $,
 +
the distance between  $  X $
 +
and  $  Y $
 +
is defined through a scalar product, in analogy with the appropriate definition in a [[Quasi-hyperbolic space|quasi-hyperbolic space]]. If  $  X Y $
 +
intersects  $  T _ {0} $
 +
but does not intersect  $  T _ {1} $,
 +
or it intersects  $  T _ {a-} 1 $
 +
but does not intersect  $  T _ {a} $,
 +
the distance between the points is defined as the scalar product with itself of the distance between the vectors of the points  $  X $
 +
and  $  Y $.
 +
 
 +
Depending on the position of the absolute relative to the planes $  T _ {0} \dots T _ {a} \dots $
 +
one distinguishes four types of straight lines of different orders: elliptic, hyperbolic, isotropic, and parabolic.
  
 
The angles between the planes in a semi-hyperbolic space are defined analogous to the angles between the planes in a quasi-hyperbolic space, i.e. using distance in the dual space.
 
The angles between the planes in a semi-hyperbolic space are defined analogous to the angles between the planes in a quasi-hyperbolic space, i.e. using distance in the dual space.
  
A projective metric in a semi-hyperbolic space is a metric of the most general form. A particular case of such a metric is a metric of a quasi-hyperbolic space. In particular, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417047.png" />-plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417048.png" /> is identical with the pseudo-Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417049.png" />, the plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417050.png" /> — with the co-pseudo-Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417051.png" />; the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417052.png" />-spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417053.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417054.png" /> coincide with the quasi-hyperbolic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417055.png" />-space, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417056.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417057.png" /> — with the co-pseudo-Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417058.png" />, etc. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417059.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417060.png" /> is dual to the pseudo-Galilean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417061.png" />, it is known as a co-pseudo-Galilean space; its absolute consists of pairs of real planes (a cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417062.png" />) and a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417063.png" /> on the straight line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417064.png" /> in which these planes intersect.
+
A projective metric in a semi-hyperbolic space is a metric of the most general form. A particular case of such a metric is a metric of a quasi-hyperbolic space. In particular, the $  2 $-
 +
plane $  {}  ^ {01} S _ {2}  ^ {0} $
 +
is identical with the pseudo-Euclidean space $  {}  ^ {1} R _ {2} $,  
 +
the plane $  {}  ^ {10} S _ {2}  ^ {1} $—  
 +
with the co-pseudo-Euclidean space $  {}  ^ {1} R _ {2}  ^ {*} $;  
 +
the $  3 $-
 +
spaces $  {}  ^ {11} S _ {3}  ^ {1} $
 +
and $  {}  ^ {10} S _ {3}  ^ {1} $
 +
coincide with the quasi-hyperbolic $  3 $-
 +
space, the $  3 $-
 +
space $  {}  ^ {10} S _ {3}  ^ {2} $—  
 +
with the co-pseudo-Euclidean space $  {}  ^ {1} R _ {3}  ^ {*} $,  
 +
etc. The $  3 $-
 +
space $  {}  ^ {100} S _ {3}  ^ {12} $
 +
is dual to the pseudo-Galilean space $  {}  ^ {1} \Gamma _ {3} $,  
 +
it is known as a co-pseudo-Galilean space; its absolute consists of pairs of real planes (a cone $  Q _ {0} $)  
 +
and a point $  T _ {1} $
 +
on the straight line $  T _ {0} $
 +
in which these planes intersect.
  
The motions of a semi-hyperbolic space are defined as collineations of the space which map the absolute into itself. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084170/s08417066.png" />, a semi-hyperbolic space is dual to itself. It is then possible to define co-motions, the definition being analogous to that of co-motions in a self-dual quasi-hyperbolic space. The group of motions and the group of motions and co-motions are Lie groups. The motions (and co-motions) of a semi-hyperbolic space are described by pseudo-orthogonal operators with indices determined by the indices of the space.
+
The motions of a semi-hyperbolic space are defined as collineations of the space which map the absolute into itself. If $  m _ {a} = n- m _ {r-} a- 1 - 1 $
 +
and $  l _ {a} = l _ {r-} a $,  
 +
a semi-hyperbolic space is dual to itself. It is then possible to define co-motions, the definition being analogous to that of co-motions in a self-dual quasi-hyperbolic space. The group of motions and the group of motions and co-motions are Lie groups. The motions (and co-motions) of a semi-hyperbolic space are described by pseudo-orthogonal operators with indices determined by the indices of the space.
  
 
A semi-hyperbolic space is a [[Semi-Riemannian space|semi-Riemannian space]].
 
A semi-hyperbolic space is a [[Semi-Riemannian space|semi-Riemannian space]].
Line 19: Line 96:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D.M.Y. Sommerville,  ''Proc. Edinburgh Math. Soc.'' , '''28'''  (1910)  pp. 25–41</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.A. Rozenfel'd,  "Non-Euclidean spaces" , Moscow  (1969)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D.M.Y. Sommerville,  ''Proc. Edinburgh Math. Soc.'' , '''28'''  (1910)  pp. 25–41</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.A. Rozenfel'd,  "Non-Euclidean spaces" , Moscow  (1969)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B.A. [B.A. Rozenfel'd] Rosenfel'd,  "A history of non-euclidean geometry" , Springer  (1988)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B.A. [B.A. Rozenfel'd] Rosenfel'd,  "A history of non-euclidean geometry" , Springer  (1988)  (Translated from Russian)</TD></TR></table>

Revision as of 08:13, 6 June 2020


A projective $ n $- space in which the metric is defined by a given absolute consisting of the following collection: a second-order real cone $ Q _ {0} $ of index $ l _ {0} $ with an $ ( n - m _ {0} - 1 ) $- plane vertex $ T _ {0} $; a real $ ( n - m _ {0} - 2 ) $- cone $ Q _ {1} $ of index $ l _ {1} $ with an $ ( n - m _ {1} - 1 ) $- plane vertex $ T _ {1} $ in the $ ( n - m _ {0} - 1 ) $- plane $ T _ {0} $; $ \dots $; a real $ ( n - m _ {r-} 2 - 2 ) $- cone $ Q _ {r-} 1 $ of index $ l _ {r-} 1 $ with an $ ( n - m _ {r-} 1 - 1 ) $- plane vertex $ T _ {r-} 1 $; and a non-degenerate real $ ( n - m _ {r-} 1 - 2 ) $- quadric $ Q _ {2} $ of index $ l _ {2} $ in the plane $ T _ {r-} 1 $; $ 0 \leq m _ {0} < m _ {1} < \dots < m _ {r-} 1 < n $. This is the definition of a semi-hyperbolic space with indices $ l _ {0} \dots l _ {r} $; it is denoted by $ {} ^ {l _ {0} {} \dots l _ {r} } S _ {n} ^ {m _ {0} \dots m _ {r-} 1 } $.

If the cone $ Q _ {0} $ is a pair of merging planes, both identical with $ T _ {0} $( for $ m _ {0} = 0 $), the semi-hyperbolic plane with the improper plane $ T _ {0} $ is called a semi-Euclidean space:

$$ {} ^ {l _ {1} \dots l _ {r} } R _ {n} ^ {m _ {1} \dots m _ {r-} 1 } . $$

The distance between two points $ X $ and $ Y $ is defined as a function of the position of the straight line $ X Y $ relative to the planes $ T _ {0} \dots T _ {r-} 1 $. In particular, if $ X X $ does not intersect $ T _ {0} $, the distance between $ X $ and $ Y $ is defined through a scalar product, in analogy with the appropriate definition in a quasi-hyperbolic space. If $ X Y $ intersects $ T _ {0} $ but does not intersect $ T _ {1} $, or it intersects $ T _ {a-} 1 $ but does not intersect $ T _ {a} $, the distance between the points is defined as the scalar product with itself of the distance between the vectors of the points $ X $ and $ Y $.

Depending on the position of the absolute relative to the planes $ T _ {0} \dots T _ {a} \dots $ one distinguishes four types of straight lines of different orders: elliptic, hyperbolic, isotropic, and parabolic.

The angles between the planes in a semi-hyperbolic space are defined analogous to the angles between the planes in a quasi-hyperbolic space, i.e. using distance in the dual space.

A projective metric in a semi-hyperbolic space is a metric of the most general form. A particular case of such a metric is a metric of a quasi-hyperbolic space. In particular, the $ 2 $- plane $ {} ^ {01} S _ {2} ^ {0} $ is identical with the pseudo-Euclidean space $ {} ^ {1} R _ {2} $, the plane $ {} ^ {10} S _ {2} ^ {1} $— with the co-pseudo-Euclidean space $ {} ^ {1} R _ {2} ^ {*} $; the $ 3 $- spaces $ {} ^ {11} S _ {3} ^ {1} $ and $ {} ^ {10} S _ {3} ^ {1} $ coincide with the quasi-hyperbolic $ 3 $- space, the $ 3 $- space $ {} ^ {10} S _ {3} ^ {2} $— with the co-pseudo-Euclidean space $ {} ^ {1} R _ {3} ^ {*} $, etc. The $ 3 $- space $ {} ^ {100} S _ {3} ^ {12} $ is dual to the pseudo-Galilean space $ {} ^ {1} \Gamma _ {3} $, it is known as a co-pseudo-Galilean space; its absolute consists of pairs of real planes (a cone $ Q _ {0} $) and a point $ T _ {1} $ on the straight line $ T _ {0} $ in which these planes intersect.

The motions of a semi-hyperbolic space are defined as collineations of the space which map the absolute into itself. If $ m _ {a} = n- m _ {r-} a- 1 - 1 $ and $ l _ {a} = l _ {r-} a $, a semi-hyperbolic space is dual to itself. It is then possible to define co-motions, the definition being analogous to that of co-motions in a self-dual quasi-hyperbolic space. The group of motions and the group of motions and co-motions are Lie groups. The motions (and co-motions) of a semi-hyperbolic space are described by pseudo-orthogonal operators with indices determined by the indices of the space.

A semi-hyperbolic space is a semi-Riemannian space.

References

[1] D.M.Y. Sommerville, Proc. Edinburgh Math. Soc. , 28 (1910) pp. 25–41
[2] B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian)

Comments

References

[a1] B.A. [B.A. Rozenfel'd] Rosenfel'd, "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian)
How to Cite This Entry:
Semi-hyperbolic space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Semi-hyperbolic_space&oldid=48661
This article was adapted from an original article by L.A. Sidorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article