Difference between revisions of "Second dual space"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0836901.png | ||
+ | $#A+1 = 23 n = 0 | ||
+ | $#C+1 = 23 : ~/encyclopedia/old_files/data/S083/S.0803690 Second dual space | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | The space $ X ^ {\prime\prime} $ | ||
+ | dual to the space $ X ^ \prime $, | ||
+ | where $ X ^ \prime $ | ||
+ | is the strong dual to a Hausdorff [[Locally convex space|locally convex space]] $ X $, | ||
+ | i.e. $ X ^ \prime $ | ||
+ | is equipped with the strong topology. Each element $ x \in X $ | ||
+ | generates an element $ F \in X ^ {\prime\prime} $ | ||
+ | in accordance with the formula $ F( f ) = f( x) $( | ||
+ | $ f \in X ^ \prime $). | ||
+ | If $ X ^ {\prime\prime} = X $, | ||
+ | the space $ X $ | ||
+ | is semi-reflexive. If $ X $ | ||
+ | is a [[Barrelled space|barrelled space]], the linear mapping $ \pi : X \rightarrow X ^ {\prime\prime} $ | ||
+ | defined by $ \pi ( x)= F $ | ||
+ | is an isomorphic imbedding of the space $ X $ | ||
+ | into the space $ X ^ {\prime\prime} $. | ||
+ | The imbedding $ \pi $ | ||
+ | is called canonical. For normed spaces $ \pi $ | ||
+ | is an isometric imbedding. | ||
====Comments==== | ====Comments==== | ||
− | The second dual | + | The second dual $ X ^ {\prime\prime} = ( X ^ \prime ) ^ \prime $ |
+ | is also called the bidual. | ||
− | For (semi-) reflexivity see also [[Reflexive space|Reflexive space]]. For the (first) dual space see [[Adjoint space|Adjoint space]]. The space | + | For (semi-) reflexivity see also [[Reflexive space|Reflexive space]]. For the (first) dual space see [[Adjoint space|Adjoint space]]. The space $ X $ |
+ | is reflexive if the canonical imbedding $ X \rightarrow X ^ {\prime\prime} $ | ||
+ | is surjective and also the two topologies coincide, where $ X ^ {\prime\prime} $ | ||
+ | is given the [[Strong topology|strong topology]] defined by the dual pair $ ( X ^ \prime , X ^ {\prime\prime} ) $. | ||
+ | For Banach spaces semi-reflexivity is the same as reflexivity. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. van Dulst, "Reflexive and superreflexive spaces" , ''MC Tracts'' , '''102''' , Math. Centre (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Köthe, "Topological vector spaces" , '''1''' , Springer (1969) pp. §23.5</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. van Dulst, "Reflexive and superreflexive spaces" , ''MC Tracts'' , '''102''' , Math. Centre (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Köthe, "Topological vector spaces" , '''1''' , Springer (1969) pp. §23.5</TD></TR></table> |
Latest revision as of 08:12, 6 June 2020
The space $ X ^ {\prime\prime} $
dual to the space $ X ^ \prime $,
where $ X ^ \prime $
is the strong dual to a Hausdorff locally convex space $ X $,
i.e. $ X ^ \prime $
is equipped with the strong topology. Each element $ x \in X $
generates an element $ F \in X ^ {\prime\prime} $
in accordance with the formula $ F( f ) = f( x) $(
$ f \in X ^ \prime $).
If $ X ^ {\prime\prime} = X $,
the space $ X $
is semi-reflexive. If $ X $
is a barrelled space, the linear mapping $ \pi : X \rightarrow X ^ {\prime\prime} $
defined by $ \pi ( x)= F $
is an isomorphic imbedding of the space $ X $
into the space $ X ^ {\prime\prime} $.
The imbedding $ \pi $
is called canonical. For normed spaces $ \pi $
is an isometric imbedding.
Comments
The second dual $ X ^ {\prime\prime} = ( X ^ \prime ) ^ \prime $ is also called the bidual.
For (semi-) reflexivity see also Reflexive space. For the (first) dual space see Adjoint space. The space $ X $ is reflexive if the canonical imbedding $ X \rightarrow X ^ {\prime\prime} $ is surjective and also the two topologies coincide, where $ X ^ {\prime\prime} $ is given the strong topology defined by the dual pair $ ( X ^ \prime , X ^ {\prime\prime} ) $. For Banach spaces semi-reflexivity is the same as reflexivity.
References
[a1] | D. van Dulst, "Reflexive and superreflexive spaces" , MC Tracts , 102 , Math. Centre (1978) |
[a2] | G. Köthe, "Topological vector spaces" , 1 , Springer (1969) pp. §23.5 |
Second dual space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Second_dual_space&oldid=48640