Namespaces
Variants
Actions

Difference between revisions of "Schwarz lemma"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s0835601.png" /> be a holomorphic function on the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s0835602.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s0835603.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s0835604.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s0835605.png" />; then
+
<!--
 +
s0835601.png
 +
$#A+1 = 32 n = 1
 +
$#C+1 = 32 : ~/encyclopedia/old_files/data/S083/S.0803560 Schwarz lemma
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s0835606.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
If equality holds for a single <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s0835607.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s0835608.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s0835609.png" /> is a real constant (the classical form of the Schwarz lemma). This lemma was proved by H.A. Schwarz (see [[#References|[1]]]).
+
Let  $  f( z) $
 +
be a holomorphic function on the disc  $  E = \{ | z | < 1 \} $,  
 +
with  $  f( 0) = 0 $
 +
and  $  | f( z) | \leq  1 $
 +
in  $  E $;
 +
then
  
Various versions of the Schwarz lemma are known. For instance, the following invariant form of the Schwarz lemma: If a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356010.png" /> is holomorphic in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356011.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356012.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356013.png" />, then for any points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356014.png" />,
+
$$ \tag{1 }
 +
| f( z) |  \leq  | z | \  \textrm{ and } \ \
 +
| f ^ { \prime } ( 0) |  \leq  1 .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356015.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
If equality holds for a single  $  z \neq 0 $,
 +
then  $  f( z) \equiv e ^ {i \alpha } z $,
 +
where  $  \alpha $
 +
is a real constant (the classical form of the Schwarz lemma). This lemma was proved by H.A. Schwarz (see [[#References|[1]]]).
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356016.png" /> is the hyperbolic distance between two points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356017.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356018.png" /> (see [[Hyperbolic metric|Hyperbolic metric]]); further, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356019.png" /> one has
+
Various versions of the Schwarz lemma are known. For instance, the following invariant form of the Schwarz lemma: If a function  $  f( z) $
 +
is holomorphic in the disc  $  E $
 +
and if  $  | f( z) | \leq  1 $
 +
in  $  E $,  
 +
then for any points  $  z _ {1} , z _ {2} \in E $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356020.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{2 }
 +
r _ {E} ( f( z _ {1} ), f( z _ {2} ))  \leq  r _ {E} ( z _ {1} , z _ {2} ),
 +
$$
  
Equality holds in (2) and (3) only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356021.png" /> is a biholomorphic mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356022.png" /> onto itself.
+
where  $  r _ {E} ( a, b) $
 +
is the hyperbolic distance between two points  $  a, b $
 +
in  $  E $(
 +
see [[Hyperbolic metric|Hyperbolic metric]]); further, for  $  z \in E $
 +
one has
  
Inequality (3) is also called the differential form of the Schwarz lemma. Integrating this inequality leads to the following formulation of the Schwarz lemma: If the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356023.png" /> is transformed by a holomorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356024.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356025.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356026.png" />, then the hyperbolic length of an arbitrary arc in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356027.png" /> decreases, except in the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356028.png" /> is a univalent conformal mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356029.png" /> onto itself; in this case hyperbolic distances between points are preserved.
+
$$ \tag{3 }
  
The principle of the hyperbolic metric (cf. [[Hyperbolic metric, principle of the|Hyperbolic metric, principle of the]]) is a generalization of the invariant form of the Schwarz lemma to multiply-connected domains on which a hyperbolic metric can be defined. Analogues of the Schwarz lemma for holomorphic mappings in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356030.png" />-dimensional complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356031.png" /> are known (see [[#References|[4]]]).
+
\frac{| df( z) | }{1- | f( z) |  ^ {2} }
 +
  \leq 
 +
\frac{| dz | }{1- | z |  ^ {2} }
 +
.
 +
$$
 +
 
 +
Equality holds in (2) and (3) only if  $  f( z) $
 +
is a biholomorphic mapping of  $  E $
 +
onto itself.
 +
 
 +
Inequality (3) is also called the differential form of the Schwarz lemma. Integrating this inequality leads to the following formulation of the Schwarz lemma: If the disc  $  E $
 +
is transformed by a holomorphic function  $  f( z) $
 +
such that  $  | f( z) | < 1 $
 +
for  $  z \in E $,
 +
then the hyperbolic length of an arbitrary arc in  $  E $
 +
decreases, except in the case when  $  f( z) $
 +
is a univalent conformal mapping of  $  E $
 +
onto itself; in this case hyperbolic distances between points are preserved.
 +
 
 +
The principle of the hyperbolic metric (cf. [[Hyperbolic metric, principle of the|Hyperbolic metric, principle of the]]) is a generalization of the invariant form of the Schwarz lemma to multiply-connected domains on which a hyperbolic metric can be defined. Analogues of the Schwarz lemma for holomorphic mappings in the $  n $-
 +
dimensional complex space $  \mathbf C  ^ {n} $
 +
are known (see [[#References|[4]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H.A. Schwarz,  "Gesamm. math. Abhandl." , '''1–2''' , Springer  (1890)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R. Nevanilinna,  "Analytic functions" , Springer  (1970)  (Translated from German)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''2''' , Moscow  (1976)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H.A. Schwarz,  "Gesamm. math. Abhandl." , '''1–2''' , Springer  (1890)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R. Nevanilinna,  "Analytic functions" , Springer  (1970)  (Translated from German)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''2''' , Moscow  (1976)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Line 29: Line 77:
 
The inequalities (2) and (3) are also known as the Schwarz–Pick lemma. Equality (2) can be written in the equivalent form
 
The inequalities (2) and (3) are also known as the Schwarz–Pick lemma. Equality (2) can be written in the equivalent form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083560/s08356032.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{| f ( z) - f( w ) | }{| 1- f( z) f( \overline{w)}\; | }
 +
 
 +
\leq 
 +
\frac{| z- w | }{| 1- z \overline{w}\; | }
 +
.
 +
$$
  
 
For an extensive treatment of the Schwarz lemma and its many generalizations and applications see [[#References|[a1]]].
 
For an extensive treatment of the Schwarz lemma and its many generalizations and applications see [[#References|[a1]]].

Latest revision as of 08:12, 6 June 2020


Let $ f( z) $ be a holomorphic function on the disc $ E = \{ | z | < 1 \} $, with $ f( 0) = 0 $ and $ | f( z) | \leq 1 $ in $ E $; then

$$ \tag{1 } | f( z) | \leq | z | \ \textrm{ and } \ \ | f ^ { \prime } ( 0) | \leq 1 . $$

If equality holds for a single $ z \neq 0 $, then $ f( z) \equiv e ^ {i \alpha } z $, where $ \alpha $ is a real constant (the classical form of the Schwarz lemma). This lemma was proved by H.A. Schwarz (see [1]).

Various versions of the Schwarz lemma are known. For instance, the following invariant form of the Schwarz lemma: If a function $ f( z) $ is holomorphic in the disc $ E $ and if $ | f( z) | \leq 1 $ in $ E $, then for any points $ z _ {1} , z _ {2} \in E $,

$$ \tag{2 } r _ {E} ( f( z _ {1} ), f( z _ {2} )) \leq r _ {E} ( z _ {1} , z _ {2} ), $$

where $ r _ {E} ( a, b) $ is the hyperbolic distance between two points $ a, b $ in $ E $( see Hyperbolic metric); further, for $ z \in E $ one has

$$ \tag{3 } \frac{| df( z) | }{1- | f( z) | ^ {2} } \leq \frac{| dz | }{1- | z | ^ {2} } . $$

Equality holds in (2) and (3) only if $ f( z) $ is a biholomorphic mapping of $ E $ onto itself.

Inequality (3) is also called the differential form of the Schwarz lemma. Integrating this inequality leads to the following formulation of the Schwarz lemma: If the disc $ E $ is transformed by a holomorphic function $ f( z) $ such that $ | f( z) | < 1 $ for $ z \in E $, then the hyperbolic length of an arbitrary arc in $ E $ decreases, except in the case when $ f( z) $ is a univalent conformal mapping of $ E $ onto itself; in this case hyperbolic distances between points are preserved.

The principle of the hyperbolic metric (cf. Hyperbolic metric, principle of the) is a generalization of the invariant form of the Schwarz lemma to multiply-connected domains on which a hyperbolic metric can be defined. Analogues of the Schwarz lemma for holomorphic mappings in the $ n $- dimensional complex space $ \mathbf C ^ {n} $ are known (see [4]).

References

[1] H.A. Schwarz, "Gesamm. math. Abhandl." , 1–2 , Springer (1890)
[2] G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian)
[3] R. Nevanilinna, "Analytic functions" , Springer (1970) (Translated from German)
[4] B.V. Shabat, "Introduction of complex analysis" , 2 , Moscow (1976) (In Russian)

Comments

Schwarz ([1]) stated this result for univalent functions only. The formulation, designation and systematic use of this lemma in the general form stated above is due to C. Carathéodory [a2]. For the history of this result, see [a3], pp. 191-192.

The inequalities (2) and (3) are also known as the Schwarz–Pick lemma. Equality (2) can be written in the equivalent form

$$ \frac{| f ( z) - f( w ) | }{| 1- f( z) f( \overline{w)}\; | } \leq \frac{| z- w | }{| 1- z \overline{w}\; | } . $$

For an extensive treatment of the Schwarz lemma and its many generalizations and applications see [a1].

References

[a1] S. Dineen, "The Schwarz lemma" , Oxford Univ. Press (1989)
[a2] C. Carathéodory, "Untersuchungen über die konformen Abbildungen von festen und veränderlichen Gebieten" Math. Ann. , 72 (1912) pp. 107–144
[a3] R.B. Burchel, "An introduction to classical complex analysis" , 1 , Birkhäuser (1979)
[a4] A.I. Markushevich, "Theory of functions of a complex variable" , 1–2 , Chelsea (1977) pp. 381, Thm. 17.8 (Translated from Russian)
[a5] L.V. Ahlfors, "Conformal invariants. Topics in geometric function theory" , McGraw-Hill (1973)
[a6] J.-B. Garnett, "Bounded analytic functions" , Acad. Press (1981)
[a7] W. Rudin, "Function theory in the unit ball in " , Springer (1980)
How to Cite This Entry:
Schwarz lemma. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schwarz_lemma&oldid=48634
This article was adapted from an original article by G.V. Kuz'mina (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article