Namespaces
Variants
Actions

Difference between revisions of "Schwarz kernel"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s0835501.png" />''
+
<!--
 +
s0835501.png
 +
$#A+1 = 30 n = 0
 +
$#C+1 = 30 : ~/encyclopedia/old_files/data/S083/S.0803550 Schwarz kernel
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
''in the disc  $  | z | < 1 $''
  
 
The function
 
The function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s0835502.png" /></td> </tr></table>
+
$$
 +
T( z; \zeta )  =
 +
\frac{\zeta + z }{\zeta - z }
 +
,\ \
 +
\zeta = e ^ {i \sigma } ,\ \
 +
0 \leq  \sigma \leq  2 \pi .
 +
$$
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s0835503.png" /> be a finite simply-connected or multiply-connected domain with boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s0835504.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s0835505.png" /> be the [[Green function|Green function]] for the [[Laplace operator|Laplace operator]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s0835506.png" />, and let the real-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s0835507.png" /> be the conjugate to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s0835508.png" />. Then the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s0835509.png" /> is called the complex Green function of the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355010.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355011.png" /> is an analytic but multiple-valued (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355012.png" /> is multiply connected) function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355013.png" /> and a single-valued non-analytic function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355014.png" />. The function
+
Let $  D $
 +
be a finite simply-connected or multiply-connected domain with boundary $  \Gamma $,  
 +
let $  G( z;  \zeta ) $
 +
be the [[Green function|Green function]] for the [[Laplace operator|Laplace operator]] in $  D $,  
 +
and let the real-valued function $  H( z;  \zeta ) $
 +
be the conjugate to $  G( z;  \zeta ) $.  
 +
Then the function $  M( z;  \zeta ) = G( z;  \zeta ) + iH( z;  \zeta ) $
 +
is called the complex Green function of the domain $  D $.  
 +
The function $  M( z;  \zeta ) $
 +
is an analytic but multiple-valued (if $  D $
 +
is multiply connected) function of $  z $
 +
and a single-valued non-analytic function of $  \zeta $.  
 +
The function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355015.png" /></td> </tr></table>
+
$$
 +
T( z; \zeta )  =
 +
\frac{\partial  M( z; \zeta ) }{\partial  \nu }
 +
,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355016.png" /> is the direction of the interior normal at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355017.png" />, is called the Schwarz kernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355018.png" />.
+
where $  \nu $
 +
is the direction of the interior normal at $  \zeta \in \Gamma $,  
 +
is called the Schwarz kernel of $  D $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355019.png" /> be an analytic function without singular points in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355020.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355021.png" /> be single valued and continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355022.png" />. Then the following formula holds:
+
Let $  F( z) = u( z) + iv( z) $
 +
be an analytic function without singular points in $  D $,  
 +
and let $  u $
 +
be single valued and continuous in $  D \cup \Gamma $.  
 +
Then the following formula holds:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355023.png" /></td> </tr></table>
+
$$
 +
F( z)  =
 +
\frac{1}{2 \pi }
 +
\int\limits _  \Gamma  u( \zeta ) T( z; \zeta )  d \sigma + iv( a),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355024.png" /> is a fixed point and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355025.png" /> is the value at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355026.png" /> of one of the branches of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355027.png" />.
+
where $  a \in D $
 +
is a fixed point and $  v( a) $
 +
is the value at $  a $
 +
of one of the branches of the function $  v( z) $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.P. Zabreiko (ed.)  A.I. Koshelev (ed.)  M.A. Krasnoselskii (ed.)  S.G. Mikhlin (ed.)  L.S. Rakovshchik (ed.)  V.Ya. Stet'senko (ed.)  T.O. Shaposhnikova (ed.)  R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff  (1975)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.G. Mikhlin,  "Linear integral equations" , Hindushtan Publ. Comp. , Delhi  (1960)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.P. Zabreiko (ed.)  A.I. Koshelev (ed.)  M.A. Krasnoselskii (ed.)  S.G. Mikhlin (ed.)  L.S. Rakovshchik (ed.)  V.Ya. Stet'senko (ed.)  T.O. Shaposhnikova (ed.)  R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff  (1975)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.G. Mikhlin,  "Linear integral equations" , Hindushtan Publ. Comp. , Delhi  (1960)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Of course, some regularity conditions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355028.png" /> have to be assumed, so that the normal derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355029.png" /> is well defined. Note that the real part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083550/s08355030.png" /> is the Poisson kernel.
+
Of course, some regularity conditions on $  \Gamma $
 +
have to be assumed, so that the normal derivative $  ( \partial  M )/ ( \partial  \nu ) $
 +
is well defined. Note that the real part of $  T $
 +
is the Poisson kernel.
  
 
See also [[Schwarz integral|Schwarz integral]].
 
See also [[Schwarz integral|Schwarz integral]].

Latest revision as of 08:12, 6 June 2020


in the disc $ | z | < 1 $

The function

$$ T( z; \zeta ) = \frac{\zeta + z }{\zeta - z } ,\ \ \zeta = e ^ {i \sigma } ,\ \ 0 \leq \sigma \leq 2 \pi . $$

Let $ D $ be a finite simply-connected or multiply-connected domain with boundary $ \Gamma $, let $ G( z; \zeta ) $ be the Green function for the Laplace operator in $ D $, and let the real-valued function $ H( z; \zeta ) $ be the conjugate to $ G( z; \zeta ) $. Then the function $ M( z; \zeta ) = G( z; \zeta ) + iH( z; \zeta ) $ is called the complex Green function of the domain $ D $. The function $ M( z; \zeta ) $ is an analytic but multiple-valued (if $ D $ is multiply connected) function of $ z $ and a single-valued non-analytic function of $ \zeta $. The function

$$ T( z; \zeta ) = \frac{\partial M( z; \zeta ) }{\partial \nu } , $$

where $ \nu $ is the direction of the interior normal at $ \zeta \in \Gamma $, is called the Schwarz kernel of $ D $.

Let $ F( z) = u( z) + iv( z) $ be an analytic function without singular points in $ D $, and let $ u $ be single valued and continuous in $ D \cup \Gamma $. Then the following formula holds:

$$ F( z) = \frac{1}{2 \pi } \int\limits _ \Gamma u( \zeta ) T( z; \zeta ) d \sigma + iv( a), $$

where $ a \in D $ is a fixed point and $ v( a) $ is the value at $ a $ of one of the branches of the function $ v( z) $.

References

[1] P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , Integral equations - a reference text , Noordhoff (1975) (Translated from Russian)
[2] S.G. Mikhlin, "Linear integral equations" , Hindushtan Publ. Comp. , Delhi (1960) (Translated from Russian)

Comments

Of course, some regularity conditions on $ \Gamma $ have to be assumed, so that the normal derivative $ ( \partial M )/ ( \partial \nu ) $ is well defined. Note that the real part of $ T $ is the Poisson kernel.

See also Schwarz integral.

How to Cite This Entry:
Schwarz kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schwarz_kernel&oldid=48633
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article