Difference between revisions of "Robin constant"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0825101.png | ||
+ | $#A+1 = 85 n = 0 | ||
+ | $#C+1 = 85 : ~/encyclopedia/old_files/data/R082/R.0802510 Robin constant | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A numerical characteristic of a set of points in a Euclidean space $ \mathbf R ^ {n} $, | |
+ | $ n \geq 2 $, | ||
+ | closely connected with the [[Capacity|capacity]] of the set. | ||
+ | |||
+ | Let $ K $ | ||
+ | be a compact set in $ \mathbf R ^ {n} $, | ||
+ | and let $ \mu $ | ||
+ | be a positive Borel measure concentrated on $ K $ | ||
+ | and normalized by the condition $ \mu ( K) = 1 $. | ||
+ | The integral | ||
+ | |||
+ | $$ | ||
+ | V ( \mu ) = {\int\limits \int\limits } _ {K \times K } | ||
+ | E _ {n} ( x , y ) d \mu ( x) d \mu ( y) , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | E _ {2} ( x , y ) = \mathop{\rm ln} | ||
+ | \frac{1}{| x - y | } | ||
+ | ,\ \ | ||
+ | E _ {n} ( x , y ) = | ||
+ | \frac{1}{| x - y | ^ {n-} 2 } | ||
+ | \textrm{ for } \ | ||
+ | n \geq 3 , | ||
+ | $$ | ||
− | and | + | and $ | x - y | $ |
+ | is the distance between two points $ x , y \in \mathbf R ^ {n} $, | ||
+ | is the energy of $ \mu $( | ||
+ | cf. [[Energy of measures|Energy of measures]]). The Robin constant of the compact set $ K $ | ||
+ | is the lower bound $ \gamma ( K) = \inf V ( \mu ) $ | ||
+ | over all measures $ \mu $ | ||
+ | of the indicate type. If $ \gamma ( K) < + \infty $, | ||
+ | then this bound is finite and is attained for some (unique) equilibrium, or capacitary, measure $ \lambda > 0 $, | ||
+ | $ \gamma ( K) = V ( \lambda ) $, | ||
+ | $ \lambda ( K) = 1 $, | ||
+ | concentrated on $ K $; | ||
+ | if $ \gamma ( K) = + \infty $, | ||
+ | then $ V ( \mu ) = + \infty $ | ||
+ | for all measures $ \mu $ | ||
+ | of the indicated type. The Robin constant of $ K $ | ||
+ | is related to its capacity by the formula | ||
− | + | $$ | |
+ | \gamma ( K) = | ||
+ | \frac{1}{C ( K) } | ||
+ | \ \textrm{ for } n \geq 3 , | ||
+ | $$ | ||
− | + | $$ | |
+ | \gamma ( K) = - \mathop{\rm ln} C ( K) \ \textrm{ for } n = 2 . | ||
+ | $$ | ||
− | If the boundary | + | If the boundary $ S $ |
+ | of $ K $ | ||
+ | is sufficiently smooth, for example, if it consists of a finite number of pairwise non-intersecting simple closed surfaces (for $ n \geq 3 $) | ||
+ | or curves (for $ n = 2 $) | ||
+ | of class $ C ^ {1 , \alpha } $, | ||
+ | $ 0 < \alpha < 1 $, | ||
+ | then the equilibrium measure $ \lambda $ | ||
+ | is concentrated on the part $ \widetilde{S} \subset S $ | ||
+ | which forms the boundary of that connected component of the complement $ C K = \mathbf R ^ {n} \setminus K $ | ||
+ | which contains the point at infinity. The equilibrium potential, Robin potential or [[Capacity potential|capacity potential]], i.e. the potential of the equilibrium measure | ||
− | + | $$ | |
+ | u ( x) = \int\limits E _ {n} ( x , y ) d \lambda ( y) , | ||
+ | $$ | ||
− | in this case assumes a constant value on | + | in this case assumes a constant value on $ \widetilde{S} $, |
+ | equal to $ \gamma ( K) $, | ||
+ | which allows one to calculate the Robin constant of a compact set in the simplest cases (see [[Robin problem|Robin problem]]). For instance, the Robin constant of a disc of radius $ r > 0 $ | ||
+ | in $ \mathbf R ^ {2} $ | ||
+ | is $ - \mathop{\rm ln} r $, | ||
+ | and the Robin constant of a ball of radius $ r > 0 $ | ||
+ | in $ \mathbf R ^ {n} $, | ||
+ | $ n \geq 3 $, | ||
+ | is $ 1 / r ^ {n-} 2 $. | ||
+ | In the case of an arbitrary compact set $ K $ | ||
+ | of positive capacity, $ u ( x) \leq \gamma ( K) $ | ||
+ | everywhere and $ u ( x) = \gamma ( K) $ | ||
+ | everywhere on the support $ S ( \lambda ) $ | ||
+ | of the equilibrium measure $ \lambda $, | ||
+ | except possibly at the points of some polar set; moreover, $ S ( \lambda ) \subset K $. | ||
− | Let | + | Let $ D $ |
+ | be a domain in the extended complex plane $ \overline{\mathbf C}\; $ | ||
+ | containing inside it the point at infinity and having a [[Green function|Green function]] $ g ( z , \infty ) $ | ||
+ | with pole at infinity. Then the following representation holds: | ||
− | + | $$ \tag{1 } | |
+ | g ( z , \infty ) = \mathop{\rm ln} | z | + \gamma ( D) + \epsilon | ||
+ | ( z , \infty ) , | ||
+ | $$ | ||
− | where | + | where $ z = x + i y $ |
+ | is a complex variable, $ \gamma ( D) $ | ||
+ | is the Robin constant of the domain $ D $ | ||
+ | and $ \epsilon ( z , \infty ) $ | ||
+ | is a [[Harmonic function|harmonic function]] in $ D $; | ||
+ | moreover, | ||
− | + | $$ | |
+ | \lim\limits _ {| z | \rightarrow \infty } \epsilon ( z , \infty ) = 0 . | ||
+ | $$ | ||
− | The Robin constant of the domain | + | The Robin constant of the domain $ D $, |
+ | defined by (1), coincides with the Robin constant of the compact set $ \partial D $: | ||
+ | $ \gamma ( D) = \gamma ( \partial D ) $. | ||
+ | If the Green function for the domain $ D $ | ||
+ | does not exist, then one assumes that $ \gamma ( D) = + \infty $. | ||
− | By generalizing the representation (1) to a [[Riemann surface|Riemann surface]] | + | By generalizing the representation (1) to a [[Riemann surface|Riemann surface]] $ R $ |
+ | which has a Green function, one can obtain a local representation of the Green function $ g ( p , p _ {0} ) $ | ||
+ | with pole $ p _ {0} \in R $: | ||
− | + | $$ \tag{2 } | |
+ | g ( p , p _ {0} ) = \ | ||
+ | \mathop{\rm ln} | ||
+ | \frac{1}{| z - z _ {0} | } | ||
− | where | + | + \gamma ( R ; p _ {0} ) + \epsilon ( p , p _ {0} ) , |
+ | $$ | ||
+ | |||
+ | where $ z = z ( p) $ | ||
+ | is a local uniformizing parameter in a neighbourhood of the pole $ p _ {0} $, | ||
+ | $ z ( p _ {0} ) = z _ {0} $, | ||
+ | $ \gamma ( R ; p _ {0} ) $ | ||
+ | is the Robin constant of the Riemann surface $ R $ | ||
+ | relative to the pole $ p _ {0} $, | ||
+ | and $ \epsilon ( p , p _ {0} ) $ | ||
+ | is a harmonic function in a neighbourhood of $ p _ {0} $; | ||
+ | moreover, $ \lim\limits _ {p \rightarrow p _ {0} } \epsilon ( p , p _ {0} ) = 0 $. | ||
+ | For Riemann surfaces $ R $ | ||
+ | which do not have a Green function one assumes $ \gamma ( R ; p _ {0} ) = + \infty $. | ||
+ | In expression (2) the value of the Robin constant $ \gamma ( R ; p _ {0} ) $ | ||
+ | depends now on the choice of the pole $ p _ {0} \in R $. | ||
+ | However, the relations $ \gamma ( R ; p _ {0} ) < + \infty $ | ||
+ | and $ \gamma ( R ; p _ {0} ) = + \infty $ | ||
+ | are independent of the choice of the pole. This allows one to use the notion of a Robin constant in the classification of Riemann surfaces (cf. [[Riemann surfaces, classification of|Riemann surfaces, classification of]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Nevanilinna, "Analytic functions" , Springer (1970) (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. [S. Stoilov] Stoilow, "Leçons sur les principes topologiques de la théorie des fonctions analytiques" , Gauthier-Villars (1938)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. Sario, M. Nakai, "Classification theory of Riemann surfaces" , Springer (1970)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Nevanilinna, "Analytic functions" , Springer (1970) (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. [S. Stoilov] Stoilow, "Leçons sur les principes topologiques de la théorie des fonctions analytiques" , Gauthier-Villars (1938)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. Sario, M. Nakai, "Classification theory of Riemann surfaces" , Springer (1970)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
See also the references quoted in [[Capacity|Capacity]]; [[Energy of measures|Energy of measures]]; [[Robin problem|Robin problem]]. | See also the references quoted in [[Capacity|Capacity]]; [[Energy of measures|Energy of measures]]; [[Robin problem|Robin problem]]. |
Revision as of 08:12, 6 June 2020
A numerical characteristic of a set of points in a Euclidean space $ \mathbf R ^ {n} $,
$ n \geq 2 $,
closely connected with the capacity of the set.
Let $ K $ be a compact set in $ \mathbf R ^ {n} $, and let $ \mu $ be a positive Borel measure concentrated on $ K $ and normalized by the condition $ \mu ( K) = 1 $. The integral
$$ V ( \mu ) = {\int\limits \int\limits } _ {K \times K } E _ {n} ( x , y ) d \mu ( x) d \mu ( y) , $$
where
$$ E _ {2} ( x , y ) = \mathop{\rm ln} \frac{1}{| x - y | } ,\ \ E _ {n} ( x , y ) = \frac{1}{| x - y | ^ {n-} 2 } \textrm{ for } \ n \geq 3 , $$
and $ | x - y | $ is the distance between two points $ x , y \in \mathbf R ^ {n} $, is the energy of $ \mu $( cf. Energy of measures). The Robin constant of the compact set $ K $ is the lower bound $ \gamma ( K) = \inf V ( \mu ) $ over all measures $ \mu $ of the indicate type. If $ \gamma ( K) < + \infty $, then this bound is finite and is attained for some (unique) equilibrium, or capacitary, measure $ \lambda > 0 $, $ \gamma ( K) = V ( \lambda ) $, $ \lambda ( K) = 1 $, concentrated on $ K $; if $ \gamma ( K) = + \infty $, then $ V ( \mu ) = + \infty $ for all measures $ \mu $ of the indicated type. The Robin constant of $ K $ is related to its capacity by the formula
$$ \gamma ( K) = \frac{1}{C ( K) } \ \textrm{ for } n \geq 3 , $$
$$ \gamma ( K) = - \mathop{\rm ln} C ( K) \ \textrm{ for } n = 2 . $$
If the boundary $ S $ of $ K $ is sufficiently smooth, for example, if it consists of a finite number of pairwise non-intersecting simple closed surfaces (for $ n \geq 3 $) or curves (for $ n = 2 $) of class $ C ^ {1 , \alpha } $, $ 0 < \alpha < 1 $, then the equilibrium measure $ \lambda $ is concentrated on the part $ \widetilde{S} \subset S $ which forms the boundary of that connected component of the complement $ C K = \mathbf R ^ {n} \setminus K $ which contains the point at infinity. The equilibrium potential, Robin potential or capacity potential, i.e. the potential of the equilibrium measure
$$ u ( x) = \int\limits E _ {n} ( x , y ) d \lambda ( y) , $$
in this case assumes a constant value on $ \widetilde{S} $, equal to $ \gamma ( K) $, which allows one to calculate the Robin constant of a compact set in the simplest cases (see Robin problem). For instance, the Robin constant of a disc of radius $ r > 0 $ in $ \mathbf R ^ {2} $ is $ - \mathop{\rm ln} r $, and the Robin constant of a ball of radius $ r > 0 $ in $ \mathbf R ^ {n} $, $ n \geq 3 $, is $ 1 / r ^ {n-} 2 $. In the case of an arbitrary compact set $ K $ of positive capacity, $ u ( x) \leq \gamma ( K) $ everywhere and $ u ( x) = \gamma ( K) $ everywhere on the support $ S ( \lambda ) $ of the equilibrium measure $ \lambda $, except possibly at the points of some polar set; moreover, $ S ( \lambda ) \subset K $.
Let $ D $ be a domain in the extended complex plane $ \overline{\mathbf C}\; $ containing inside it the point at infinity and having a Green function $ g ( z , \infty ) $ with pole at infinity. Then the following representation holds:
$$ \tag{1 } g ( z , \infty ) = \mathop{\rm ln} | z | + \gamma ( D) + \epsilon ( z , \infty ) , $$
where $ z = x + i y $ is a complex variable, $ \gamma ( D) $ is the Robin constant of the domain $ D $ and $ \epsilon ( z , \infty ) $ is a harmonic function in $ D $; moreover,
$$ \lim\limits _ {| z | \rightarrow \infty } \epsilon ( z , \infty ) = 0 . $$
The Robin constant of the domain $ D $, defined by (1), coincides with the Robin constant of the compact set $ \partial D $: $ \gamma ( D) = \gamma ( \partial D ) $. If the Green function for the domain $ D $ does not exist, then one assumes that $ \gamma ( D) = + \infty $.
By generalizing the representation (1) to a Riemann surface $ R $ which has a Green function, one can obtain a local representation of the Green function $ g ( p , p _ {0} ) $ with pole $ p _ {0} \in R $:
$$ \tag{2 } g ( p , p _ {0} ) = \ \mathop{\rm ln} \frac{1}{| z - z _ {0} | } + \gamma ( R ; p _ {0} ) + \epsilon ( p , p _ {0} ) , $$
where $ z = z ( p) $ is a local uniformizing parameter in a neighbourhood of the pole $ p _ {0} $, $ z ( p _ {0} ) = z _ {0} $, $ \gamma ( R ; p _ {0} ) $ is the Robin constant of the Riemann surface $ R $ relative to the pole $ p _ {0} $, and $ \epsilon ( p , p _ {0} ) $ is a harmonic function in a neighbourhood of $ p _ {0} $; moreover, $ \lim\limits _ {p \rightarrow p _ {0} } \epsilon ( p , p _ {0} ) = 0 $. For Riemann surfaces $ R $ which do not have a Green function one assumes $ \gamma ( R ; p _ {0} ) = + \infty $. In expression (2) the value of the Robin constant $ \gamma ( R ; p _ {0} ) $ depends now on the choice of the pole $ p _ {0} \in R $. However, the relations $ \gamma ( R ; p _ {0} ) < + \infty $ and $ \gamma ( R ; p _ {0} ) = + \infty $ are independent of the choice of the pole. This allows one to use the notion of a Robin constant in the classification of Riemann surfaces (cf. Riemann surfaces, classification of).
References
[1] | R. Nevanilinna, "Analytic functions" , Springer (1970) (Translated from German) |
[2] | S. [S. Stoilov] Stoilow, "Leçons sur les principes topologiques de la théorie des fonctions analytiques" , Gauthier-Villars (1938) |
[3] | L. Sario, M. Nakai, "Classification theory of Riemann surfaces" , Springer (1970) |
Comments
See also the references quoted in Capacity; Energy of measures; Robin problem.
Robin constant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Robin_constant&oldid=48580