|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | r1101102.png |
| + | $#A+1 = 60 n = 0 |
| + | $#C+1 = 60 : ~/encyclopedia/old_files/data/R110/R.1100110 \BMI ro\EMI\AAhgroup, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''right-ordered group'' | | ''right-ordered group'' |
| | | |
− | A [[Group|group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r1101102.png" /> endowed with a total order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r1101103.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r1101104.png" />, | + | A [[Group|group]] $ G $ |
| + | endowed with a total order $ \cle $ |
| + | such that for all $ x,y,z \in G $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r1101105.png" /></td> </tr></table>
| + | $$ |
| + | x \cle y \Rightarrow xz \cle yz. |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r1101106.png" /> is the positive cone of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r1101107.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r1101108.png" /> (cf. also [[L-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r1101109.png" />-group]]), then: | + | If $ P = P ( G ) = \{ {x \in G } : {x \cge e } \} $ |
| + | is the positive cone of the $ ro $- |
| + | group $ G $( |
| + | cf. also [[L-group| $ l $- |
| + | group]]), then: |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011010.png" />; | + | 1) $ P \cdot P \subseteq P $; |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011011.png" />; | + | 2) $ P \cap P ^ {- 1 } = \{ e \} $; |
| | | |
− | 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011012.png" />. If, in a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011013.png" />, there is a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011014.png" /> satisfying 1)–3), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011015.png" /> can given the structure of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011016.png" />-group with positive cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011017.png" /> by a setting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011018.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011019.png" />. The positive cone of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011020.png" />-group is isolated, i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011021.png" />. | + | 3) $ P \cup P ^ {- 1 } = G $. |
| + | If, in a group $ G $, |
| + | there is a subset $ P $ |
| + | satisfying 1)–3), then $ G $ |
| + | can given the structure of a $ ro $- |
| + | group with positive cone $ P $ |
| + | by a setting $ x \cle y $ |
| + | if and only if $ yx ^ {- 1 } \in P $. |
| + | The positive cone of a $ ro $- |
| + | group is isolated, i.e., $ x ^ {n} \in P \Rightarrow x \in P $. |
| | | |
− | The group of order automorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011022.png" /> of a totally ordered set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011023.png" /> can be turned into a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011024.png" />-group by defining the following relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011025.png" /> on it. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011026.png" /> be any well ordering on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011027.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011028.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011029.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011030.png" /> be the first (with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011031.png" />) element in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011032.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011033.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011034.png" />-group with respect to the order with positive cone | + | The group of order automorphisms $ { \mathop{\rm Aut} } ( X ) $ |
| + | of a totally ordered set $ \{ X; \cle \} $ |
| + | can be turned into a $ ro $- |
| + | group by defining the following relation $ \cle $ |
| + | on it. Let $ \prec $ |
| + | be any well ordering on $ X $: |
| + | $ x _ {1} \prec \dots \prec x _ \alpha \prec \dots $. |
| + | Let $ \varphi \in { \mathop{\rm Aut} } ( X ) $ |
| + | and let $ x _ \alpha $ |
| + | be the first (with respect to $ \prec $) |
| + | element in $ \{ {x \in X } : {x \varphi \neq x } \} $. |
| + | Then $ A ( X ) $ |
| + | is a $ ro $- |
| + | group with respect to the order with positive cone |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011035.png" /></td> </tr></table>
| + | $$ |
| + | P \subset A ( X ) = \left \{ {\varphi \in { \mathop{\rm Aut} } ( X ) } : {x _ \alpha \varphi \cge x _ \alpha } \right \} . |
| + | $$ |
| | | |
− | Any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011036.png" />-group is isomorphic to a subgroup of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011037.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011038.png" /> for some totally ordered set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011039.png" />. There exist simple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011040.png" />-groups whose finitely generated subgroups coincide with the commutator subgroup. The class of all groups that can be turned into a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011041.png" />-group is a [[Quasi-variety|quasi-variety]], i.e., it is defined by a system of formulas of the form: | + | Any $ ro $- |
| + | group is isomorphic to a subgroup of the $ ro $- |
| + | group $ { \mathop{\rm Aut} } ( X ) $ |
| + | for some totally ordered set $ X $. |
| + | There exist simple $ ro $- |
| + | groups whose finitely generated subgroups coincide with the commutator subgroup. The class of all groups that can be turned into a $ ro $- |
| + | group is a [[Quasi-variety|quasi-variety]], i.e., it is defined by a system of formulas of the form: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011042.png" /></td> </tr></table>
| + | $$ |
| + | \forall x _ {1} \dots x _ {n} : |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011043.png" /></td> </tr></table>
| + | $$ |
| + | ( w _ {1} ( x _ {1} \dots x _ {n} ) = e \& \dots \& w _ {m} ( x _ {1} \dots x _ {n} ) = e ) \Rightarrow |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011044.png" /></td> </tr></table>
| + | $$ |
| + | \Rightarrow |
| + | w ( x _ {1} \dots x _ {n} ) = e, |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011046.png" /> are the group-theoretical words. This class is closed under formation of subgroups, Cartesian and free products, and extension, and is locally closed. | + | where $ w $, |
| + | $ w _ {i} $ |
| + | are the group-theoretical words. This class is closed under formation of subgroups, Cartesian and free products, and extension, and is locally closed. |
| | | |
− | The system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011047.png" /> of convex subgroups of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011048.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011049.png" /> is a complete chain. It can be non-solvable, non-infra-invariant and non-normal. There exist non-Abelian <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011050.png" />-groups without proper convex subgroups. | + | The system $ {\mathcal C} ( G ) $ |
| + | of convex subgroups of a $ ro $- |
| + | group $ G $ |
| + | is a complete chain. It can be non-solvable, non-infra-invariant and non-normal. There exist non-Abelian $ ro $- |
| + | groups without proper convex subgroups. |
| | | |
− | A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011051.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011052.png" /> is Archimedean if for any positive elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011054.png" /> there exists a positive integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011055.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011056.png" />. An Archimedean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011057.png" />-group is order-isomorphic to some subgroup of the additive group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011058.png" /> of real numbers with the natural order. The class of Conradian <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011060.png" />-groups, i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011061.png" />-groups for which the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011062.png" /> is subnormal and the quotient groups of the jumps of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011063.png" /> are Archimedean, is well investigated. | + | A $ ro $- |
| + | group $ G $ |
| + | is Archimedean if for any positive elements $ x,y \in G $ |
| + | there exists a positive integer $ n $ |
| + | such that $ x ^ {n} > y $. |
| + | An Archimedean $ ro $- |
| + | group is order-isomorphic to some subgroup of the additive group $ \mathbf R $ |
| + | of real numbers with the natural order. The class of Conradian $ ro $- |
| + | groups, i.e., $ ro $- |
| + | groups for which the system $ {\mathcal C} ( G ) $ |
| + | is subnormal and the quotient groups of the jumps of $ {\mathcal C} ( G ) $ |
| + | are Archimedean, is well investigated. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.M. Kopytov, N.Ya. Medvedev, "The theory of lattice-ordered groups" , Kluwer Acad. Publ. (1994) (In Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.T.B. Mura, A.H. Rhemtulla, "Orderable groups" , M. Dekker (1977)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.M. Kopytov, N.Ya. Medvedev, "The theory of lattice-ordered groups" , Kluwer Acad. Publ. (1994) (In Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.T.B. Mura, A.H. Rhemtulla, "Orderable groups" , M. Dekker (1977)</TD></TR></table> |
right-ordered group
A group $ G $
endowed with a total order $ \cle $
such that for all $ x,y,z \in G $,
$$
x \cle y \Rightarrow xz \cle yz.
$$
If $ P = P ( G ) = \{ {x \in G } : {x \cge e } \} $
is the positive cone of the $ ro $-
group $ G $(
cf. also $ l $-
group), then:
1) $ P \cdot P \subseteq P $;
2) $ P \cap P ^ {- 1 } = \{ e \} $;
3) $ P \cup P ^ {- 1 } = G $.
If, in a group $ G $,
there is a subset $ P $
satisfying 1)–3), then $ G $
can given the structure of a $ ro $-
group with positive cone $ P $
by a setting $ x \cle y $
if and only if $ yx ^ {- 1 } \in P $.
The positive cone of a $ ro $-
group is isolated, i.e., $ x ^ {n} \in P \Rightarrow x \in P $.
The group of order automorphisms $ { \mathop{\rm Aut} } ( X ) $
of a totally ordered set $ \{ X; \cle \} $
can be turned into a $ ro $-
group by defining the following relation $ \cle $
on it. Let $ \prec $
be any well ordering on $ X $:
$ x _ {1} \prec \dots \prec x _ \alpha \prec \dots $.
Let $ \varphi \in { \mathop{\rm Aut} } ( X ) $
and let $ x _ \alpha $
be the first (with respect to $ \prec $)
element in $ \{ {x \in X } : {x \varphi \neq x } \} $.
Then $ A ( X ) $
is a $ ro $-
group with respect to the order with positive cone
$$
P \subset A ( X ) = \left \{ {\varphi \in { \mathop{\rm Aut} } ( X ) } : {x _ \alpha \varphi \cge x _ \alpha } \right \} .
$$
Any $ ro $-
group is isomorphic to a subgroup of the $ ro $-
group $ { \mathop{\rm Aut} } ( X ) $
for some totally ordered set $ X $.
There exist simple $ ro $-
groups whose finitely generated subgroups coincide with the commutator subgroup. The class of all groups that can be turned into a $ ro $-
group is a quasi-variety, i.e., it is defined by a system of formulas of the form:
$$
\forall x _ {1} \dots x _ {n} :
$$
$$
( w _ {1} ( x _ {1} \dots x _ {n} ) = e \& \dots \& w _ {m} ( x _ {1} \dots x _ {n} ) = e ) \Rightarrow
$$
$$
\Rightarrow
w ( x _ {1} \dots x _ {n} ) = e,
$$
where $ w $,
$ w _ {i} $
are the group-theoretical words. This class is closed under formation of subgroups, Cartesian and free products, and extension, and is locally closed.
The system $ {\mathcal C} ( G ) $
of convex subgroups of a $ ro $-
group $ G $
is a complete chain. It can be non-solvable, non-infra-invariant and non-normal. There exist non-Abelian $ ro $-
groups without proper convex subgroups.
A $ ro $-
group $ G $
is Archimedean if for any positive elements $ x,y \in G $
there exists a positive integer $ n $
such that $ x ^ {n} > y $.
An Archimedean $ ro $-
group is order-isomorphic to some subgroup of the additive group $ \mathbf R $
of real numbers with the natural order. The class of Conradian $ ro $-
groups, i.e., $ ro $-
groups for which the system $ {\mathcal C} ( G ) $
is subnormal and the quotient groups of the jumps of $ {\mathcal C} ( G ) $
are Archimedean, is well investigated.
References
[a1] | V.M. Kopytov, N.Ya. Medvedev, "The theory of lattice-ordered groups" , Kluwer Acad. Publ. (1994) (In Russian) |
[a2] | R.T.B. Mura, A.H. Rhemtulla, "Orderable groups" , M. Dekker (1977) |