Namespaces
Variants
Actions

Difference between revisions of "Ringoid"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A generalization of the notion of an associative ring (cf. [[Associative rings and algebras|Associative rings and algebras]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r0824701.png" /> be the [[Variety of universal algebras|variety of universal algebras]] (cf. also [[Universal algebra|Universal algebra]]) of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r0824702.png" />. The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r0824703.png" /> is called a ringoid over the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r0824704.png" /> of the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r0824705.png" />, or an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r0824707.png" />-ringoid, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r0824708.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r0824709.png" />, the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r08247010.png" /> is a subgroup with respect to the multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r08247011.png" /> and the right distributive law holds with respect to multiplication:
+
<!--
 +
r0824701.png
 +
$#A+1 = 18 n = 0
 +
$#C+1 = 18 : ~/encyclopedia/old_files/data/R082/R.0802470 Ringoid
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r08247012.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The operations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r08247013.png" /> are called the additive operations of the ringoid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r08247014.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r08247015.png" /> is called the additive algebra of the ringoid. A ringoid is called distributive if the left distributive law holds also, that is, if
+
A generalization of the notion of an associative ring (cf. [[Associative rings and algebras|Associative rings and algebras]]). Let  $  ( \Omega , \Lambda ) $
 +
be the [[Variety of universal algebras|variety of universal algebras]] (cf. also [[Universal algebra|Universal algebra]]) of signature  $  \Omega $.  
 +
The algebra  $  \mathbf G = \{ G , \Omega \cup ( \cdot ) \} $
 +
is called a ringoid over the algebra $  \mathbf G  ^ {+} = \{ G , \Omega \} $
 +
of the variety  $  ( \Omega , \Lambda ) $,
 +
or an  $  ( \Omega , \Lambda ) $-
 +
ringoid, if  $  \mathbf G  ^ {+} $
 +
belongs to  $  ( \Omega , \Lambda ) $,
 +
the algebra  $  \mathbf G $
 +
is a subgroup with respect to the multiplication  $  ( \cdot ) $
 +
and the right distributive law holds with respect to multiplication:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r08247016.png" /></td> </tr></table>
+
$$
 +
( x _ {1} \dots x _ {n} \omega ) \cdot y  = ( x _ {1} y ) \dots
 +
( x _ {n} y ) \omega ,\ \
 +
\forall  \omega \in \Omega ,\  x _ {i} \in G .
 +
$$
  
An ordinary associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r08247017.png" /> is a distributive ringoid over an Abelian group (and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r08247018.png" /> is the additive group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082470/r08247019.png" />). A ringoid over a group is called a near-ring, a ringoid over a semi-group a semi-ring, a ringoid over a loop a neo-ring. Rings over rings are also considered (under various names, one of which is Menger algebra).
+
The operations of  $  \Omega $
 +
are called the additive operations of the ringoid  $  \mathbf G $,
 +
and  $  \mathbf G  ^ {+} $
 +
is called the additive algebra of the ringoid. A ringoid is called distributive if the left distributive law holds also, that is, if
 +
 
 +
$$
 +
y \cdot ( x _ {1} \dots x _ {n} \omega )  = \
 +
( y x _ {1} ) \dots ( y x _ {n} ) \omega .
 +
$$
 +
 
 +
An ordinary associative ring $  \mathbf G $
 +
is a distributive ringoid over an Abelian group (and $  \mathbf G  ^ {+} $
 +
is the additive group of $  \mathbf G $).  
 +
A ringoid over a group is called a near-ring, a ringoid over a semi-group a semi-ring, a ringoid over a loop a neo-ring. Rings over rings are also considered (under various names, one of which is Menger algebra).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.G. Kurosh,  "Lectures on general algebra" , Chelsea  (1963)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.G. Kurosh,  "Lectures on general algebra" , Chelsea  (1963)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 08:11, 6 June 2020


A generalization of the notion of an associative ring (cf. Associative rings and algebras). Let $ ( \Omega , \Lambda ) $ be the variety of universal algebras (cf. also Universal algebra) of signature $ \Omega $. The algebra $ \mathbf G = \{ G , \Omega \cup ( \cdot ) \} $ is called a ringoid over the algebra $ \mathbf G ^ {+} = \{ G , \Omega \} $ of the variety $ ( \Omega , \Lambda ) $, or an $ ( \Omega , \Lambda ) $- ringoid, if $ \mathbf G ^ {+} $ belongs to $ ( \Omega , \Lambda ) $, the algebra $ \mathbf G $ is a subgroup with respect to the multiplication $ ( \cdot ) $ and the right distributive law holds with respect to multiplication:

$$ ( x _ {1} \dots x _ {n} \omega ) \cdot y = ( x _ {1} y ) \dots ( x _ {n} y ) \omega ,\ \ \forall \omega \in \Omega ,\ x _ {i} \in G . $$

The operations of $ \Omega $ are called the additive operations of the ringoid $ \mathbf G $, and $ \mathbf G ^ {+} $ is called the additive algebra of the ringoid. A ringoid is called distributive if the left distributive law holds also, that is, if

$$ y \cdot ( x _ {1} \dots x _ {n} \omega ) = \ ( y x _ {1} ) \dots ( y x _ {n} ) \omega . $$

An ordinary associative ring $ \mathbf G $ is a distributive ringoid over an Abelian group (and $ \mathbf G ^ {+} $ is the additive group of $ \mathbf G $). A ringoid over a group is called a near-ring, a ringoid over a semi-group a semi-ring, a ringoid over a loop a neo-ring. Rings over rings are also considered (under various names, one of which is Menger algebra).

References

[1] A.G. Kurosh, "Lectures on general algebra" , Chelsea (1963) (Translated from Russian)

Comments

The term "ringoid" , like groupoid, has at least two unrelated meanings, cf. [a1][a3].

References

[a1] P.J. Hilton, W. Ledermann, "Homology and ringoids. I" Proc. Cambridge Phil. Soc. , 54 (1958) pp. 156–167
[a2] P.J. Hilton, W. Ledermann, "Homology and ringoids. II" Proc. Cambridge Phil. Soc. , 55 (1959) pp. 149–164
[a3] P.J. Hilton, W. Ledermann, "Homology and ringoids. III" Proc. Cambridge Phil. Soc. , 56 (1960) pp. 1–12
How to Cite This Entry:
Ringoid. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ringoid&oldid=48575
This article was adapted from an original article by O.A. Ivanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article