Difference between revisions of "Representation with a highest weight vector"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0814901.png | ||
+ | $#A+1 = 88 n = 0 | ||
+ | $#C+1 = 88 : ~/encyclopedia/old_files/data/R081/R.0801490 Representation with a highest weight vector | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A linear representation (cf. [[Representation of a Lie algebra|Representation of a Lie algebra]]) $ \rho $ | |
+ | of a finite-dimensional semi-simple split Lie algebra $ \mathfrak g $ | ||
+ | over a field $ k $ | ||
+ | of characteristic zero with a split [[Cartan subalgebra|Cartan subalgebra]] $ \mathfrak t $, | ||
+ | having the following properties. | ||
− | + | 1) In the space $ V $ | |
+ | of $ \rho $ | ||
+ | there is a cyclic vector $ v $( | ||
+ | i.e. $ V $ | ||
+ | is the smallest $ \mathfrak g $- | ||
+ | invariant subspace containing $ v $). | ||
− | + | 2) $ \rho ( h) v = \lambda ( h) v $ | |
+ | for all $ h \in \mathfrak t $, | ||
+ | where $ \lambda $ | ||
+ | is some fixed linear form on $ \mathfrak t $ | ||
+ | with values in $ k $. | ||
− | + | 3) If $ \alpha _ {1} \dots \alpha _ {r} $ | |
+ | is a system of simple roots, defined by a lexicographical order on the set $ \Delta $ | ||
+ | of all roots of $ \mathfrak g $ | ||
+ | relative to $ \mathfrak t $( | ||
+ | cf. [[Root system|Root system]]), and if $ e _ {\alpha _ {i} } , \mathfrak t _ {\alpha _ {i} } , h _ {\alpha _ {i} } $ | ||
+ | are the vectors from the Chevalley basis of $ \mathfrak g $ | ||
+ | corresponding to $ \alpha _ {i} $, | ||
+ | $ i = 1 \dots r $, | ||
+ | then $ \rho ( e _ {\alpha _ {i} } ) ( v) = 0 $ | ||
+ | for all $ i = 1 \dots r $. | ||
+ | Thus, $ \lambda $ | ||
+ | is a weight relative to the restriction of $ \rho $ | ||
+ | to $ \mathfrak t $( | ||
+ | cf. [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]]); it is called a highest weight. The space $ V $ | ||
+ | is called a cyclic $ \mathfrak g $- | ||
+ | module with highest weight $ \lambda $ | ||
+ | and generator $ v $, | ||
+ | and $ v $ | ||
+ | is called a highest weight vector. | ||
− | + | There exists for every linear form $ \lambda $ | |
+ | on $ \mathfrak t $ | ||
+ | a unique, up to equivalence, irreducible representation $ \rho _ \lambda $ | ||
+ | of $ \mathfrak g $ | ||
+ | with highest weight $ \lambda $. | ||
+ | The $ \mathfrak g $- | ||
+ | module $ V ( \lambda ) $ | ||
+ | determined by $ \rho _ \lambda $ | ||
+ | is a direct sum of weight subspaces relative to the restriction of $ \rho _ \lambda $ | ||
+ | to $ \mathfrak t $. | ||
+ | Their weights have the form | ||
− | + | $$ | |
+ | \lambda - | ||
+ | \sum _ {i = 1 } ^ { r } | ||
+ | n _ {i} \alpha _ {i} , | ||
+ | $$ | ||
− | + | where the $ n _ {i} $ | |
+ | are non-negative integers. The weight subspace $ V _ \mu ( \lambda ) $ | ||
+ | of weight $ \mu $ | ||
+ | is finite-dimensional, spanned over $ k $ | ||
+ | by vectors of the form | ||
− | + | $$ | |
+ | ( \rho _ \lambda ( f _ {\alpha _ {i _ {1} } } ) \dots | ||
+ | \rho _ \lambda ( f _ {\alpha _ {i _ {s} } } ) ) ( v ) , | ||
+ | $$ | ||
− | + | and for any $ h \in \mathfrak t $ | |
+ | the restriction of $ \rho _ \lambda ( h) $ | ||
+ | to $ V _ \mu ( \lambda ) $ | ||
+ | is the operator of scalar multiplication by $ \mu ( h) $. | ||
+ | The space $ V _ \lambda ( \lambda ) $ | ||
+ | is one-dimensional; the weight $ \lambda $ | ||
+ | is the only highest weight of $ \rho _ \lambda $ | ||
+ | and can be characterized as the unique weight of the $ \mathfrak t $- | ||
+ | module $ V ( \lambda ) $ | ||
+ | such that any other weight has the form | ||
− | + | $$ | |
+ | \lambda - | ||
+ | \sum _ {i = 1 } ^ { r } | ||
+ | n _ {i} \alpha _ {i} , | ||
+ | $$ | ||
− | + | where the $ n _ {i} $ | |
+ | are non-negative integers. | ||
− | ( | + | A representation $ \rho _ \lambda $ |
+ | is finite-dimensional if and only if $ \lambda $ | ||
+ | is a dominant linear form on $ \mathfrak t $, | ||
+ | i.e. $ \lambda ( h _ {\alpha _ {i} } ) $ | ||
+ | is a non-negative integer for $ i = 1 \dots r $. | ||
+ | Every irreducible finite-dimensional linear representation of $ \mathfrak g $ | ||
+ | has the form $ \rho _ \lambda $ | ||
+ | for some dominant linear form $ \lambda $ | ||
+ | on $ \mathfrak t $( | ||
+ | hence all such representations are classified, up to equivalence, by the dominant linear forms on $ \mathfrak t $). | ||
+ | The set of all weights of a finite-dimensional representation $ \rho _ \lambda $ | ||
+ | relative to $ \mathfrak t $ | ||
+ | is invariant relative to the [[Weyl group|Weyl group]] of $ \mathfrak g $( | ||
+ | regarded as a group of linear transformations of $ \mathfrak t $), | ||
+ | and if weights $ \mu $ | ||
+ | and $ \gamma $ | ||
+ | belong to one orbit of the Weyl group, then the dimensions of the spaces $ V _ \mu ( \lambda ) $ | ||
+ | and $ V _ \gamma ( \lambda ) $ | ||
+ | are equal. For every weight $ \mu $ | ||
+ | and every root $ \alpha \in \Delta $ | ||
+ | the number $ \mu ( h _ \alpha ) $ | ||
+ | is an integer; if, moreover, $ \mu + \alpha $ | ||
+ | is also a weight, then | ||
+ | |||
+ | $$ | ||
+ | \rho ( e _ \alpha ) | ||
+ | ( V _ \mu ( \lambda )) \neq 0 | ||
+ | $$ | ||
+ | |||
+ | (here $ h _ \alpha $ | ||
+ | is the element in $ \mathfrak t $ | ||
+ | corresponding to $ \alpha $ | ||
+ | and $ e _ \alpha $ | ||
+ | is the root vector of $ \alpha $). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> , ''Theórie des algèbres de Lie. Topologie des groupes de Lie'' , ''Sem. S. Lie'' , '''Ie année 1954–1955''' , Secr. Math. Univ. Paris (1955)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Cartan, "Les tenseurs irréductibles et les groupes linéaires simples et semi-simples" ''Bull. Sci. Math.'' , '''49''' (1925) pp. 130–152</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> Harish-Chandra, "On some applications of the universal enveloping algebra of a semisimple Lie algebra" ''Trans. Amer. Math. Soc.'' , '''70''' (1951) pp. 28–96</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> , ''Theórie des algèbres de Lie. Topologie des groupes de Lie'' , ''Sem. S. Lie'' , '''Ie année 1954–1955''' , Secr. Math. Univ. Paris (1955)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Cartan, "Les tenseurs irréductibles et les groupes linéaires simples et semi-simples" ''Bull. Sci. Math.'' , '''49''' (1925) pp. 130–152</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> Harish-Chandra, "On some applications of the universal enveloping algebra of a semisimple Lie algebra" ''Trans. Amer. Math. Soc.'' , '''70''' (1951) pp. 28–96</TD></TR></table> |
Latest revision as of 08:11, 6 June 2020
A linear representation (cf. Representation of a Lie algebra) $ \rho $
of a finite-dimensional semi-simple split Lie algebra $ \mathfrak g $
over a field $ k $
of characteristic zero with a split Cartan subalgebra $ \mathfrak t $,
having the following properties.
1) In the space $ V $ of $ \rho $ there is a cyclic vector $ v $( i.e. $ V $ is the smallest $ \mathfrak g $- invariant subspace containing $ v $).
2) $ \rho ( h) v = \lambda ( h) v $ for all $ h \in \mathfrak t $, where $ \lambda $ is some fixed linear form on $ \mathfrak t $ with values in $ k $.
3) If $ \alpha _ {1} \dots \alpha _ {r} $ is a system of simple roots, defined by a lexicographical order on the set $ \Delta $ of all roots of $ \mathfrak g $ relative to $ \mathfrak t $( cf. Root system), and if $ e _ {\alpha _ {i} } , \mathfrak t _ {\alpha _ {i} } , h _ {\alpha _ {i} } $ are the vectors from the Chevalley basis of $ \mathfrak g $ corresponding to $ \alpha _ {i} $, $ i = 1 \dots r $, then $ \rho ( e _ {\alpha _ {i} } ) ( v) = 0 $ for all $ i = 1 \dots r $. Thus, $ \lambda $ is a weight relative to the restriction of $ \rho $ to $ \mathfrak t $( cf. Weight of a representation of a Lie algebra); it is called a highest weight. The space $ V $ is called a cyclic $ \mathfrak g $- module with highest weight $ \lambda $ and generator $ v $, and $ v $ is called a highest weight vector.
There exists for every linear form $ \lambda $ on $ \mathfrak t $ a unique, up to equivalence, irreducible representation $ \rho _ \lambda $ of $ \mathfrak g $ with highest weight $ \lambda $. The $ \mathfrak g $- module $ V ( \lambda ) $ determined by $ \rho _ \lambda $ is a direct sum of weight subspaces relative to the restriction of $ \rho _ \lambda $ to $ \mathfrak t $. Their weights have the form
$$ \lambda - \sum _ {i = 1 } ^ { r } n _ {i} \alpha _ {i} , $$
where the $ n _ {i} $ are non-negative integers. The weight subspace $ V _ \mu ( \lambda ) $ of weight $ \mu $ is finite-dimensional, spanned over $ k $ by vectors of the form
$$ ( \rho _ \lambda ( f _ {\alpha _ {i _ {1} } } ) \dots \rho _ \lambda ( f _ {\alpha _ {i _ {s} } } ) ) ( v ) , $$
and for any $ h \in \mathfrak t $ the restriction of $ \rho _ \lambda ( h) $ to $ V _ \mu ( \lambda ) $ is the operator of scalar multiplication by $ \mu ( h) $. The space $ V _ \lambda ( \lambda ) $ is one-dimensional; the weight $ \lambda $ is the only highest weight of $ \rho _ \lambda $ and can be characterized as the unique weight of the $ \mathfrak t $- module $ V ( \lambda ) $ such that any other weight has the form
$$ \lambda - \sum _ {i = 1 } ^ { r } n _ {i} \alpha _ {i} , $$
where the $ n _ {i} $ are non-negative integers.
A representation $ \rho _ \lambda $ is finite-dimensional if and only if $ \lambda $ is a dominant linear form on $ \mathfrak t $, i.e. $ \lambda ( h _ {\alpha _ {i} } ) $ is a non-negative integer for $ i = 1 \dots r $. Every irreducible finite-dimensional linear representation of $ \mathfrak g $ has the form $ \rho _ \lambda $ for some dominant linear form $ \lambda $ on $ \mathfrak t $( hence all such representations are classified, up to equivalence, by the dominant linear forms on $ \mathfrak t $). The set of all weights of a finite-dimensional representation $ \rho _ \lambda $ relative to $ \mathfrak t $ is invariant relative to the Weyl group of $ \mathfrak g $( regarded as a group of linear transformations of $ \mathfrak t $), and if weights $ \mu $ and $ \gamma $ belong to one orbit of the Weyl group, then the dimensions of the spaces $ V _ \mu ( \lambda ) $ and $ V _ \gamma ( \lambda ) $ are equal. For every weight $ \mu $ and every root $ \alpha \in \Delta $ the number $ \mu ( h _ \alpha ) $ is an integer; if, moreover, $ \mu + \alpha $ is also a weight, then
$$ \rho ( e _ \alpha ) ( V _ \mu ( \lambda )) \neq 0 $$
(here $ h _ \alpha $ is the element in $ \mathfrak t $ corresponding to $ \alpha $ and $ e _ \alpha $ is the root vector of $ \alpha $).
References
[1] | N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979)) |
[2] | , Theórie des algèbres de Lie. Topologie des groupes de Lie , Sem. S. Lie , Ie année 1954–1955 , Secr. Math. Univ. Paris (1955) |
[3] | D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian) |
[4] | E. Cartan, "Les tenseurs irréductibles et les groupes linéaires simples et semi-simples" Bull. Sci. Math. , 49 (1925) pp. 130–152 |
[5] | Harish-Chandra, "On some applications of the universal enveloping algebra of a semisimple Lie algebra" Trans. Amer. Math. Soc. , 70 (1951) pp. 28–96 |
Representation with a highest weight vector. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Representation_with_a_highest_weight_vector&oldid=48523