Difference between revisions of "Remainder"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | r0812001.png | ||
+ | $#A+1 = 13 n = 0 | ||
+ | $#C+1 = 13 : ~/encyclopedia/old_files/data/R081/R.0801200 Remainder | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''of an expansion of a function'' | ''of an expansion of a function'' | ||
Line 5: | Line 17: | ||
The approximating formulas alluded to include the [[Taylor formula|Taylor formula]], interpolation formulas, asymptotic formulas, formulas for the approximate evaluation of some quantity, etc. Thus, in the Taylor formula | The approximating formulas alluded to include the [[Taylor formula|Taylor formula]], interpolation formulas, asymptotic formulas, formulas for the approximate evaluation of some quantity, etc. Thus, in the Taylor formula | ||
− | + | $$ | |
− | + | f( x) = \ | |
− | + | \sum _ { k= } 0 ^ { n } | |
+ | \frac{f ^ { ( k) } ( x _ {0} ) }{k!} | ||
+ | ( x - x _ {0} ) ^ {k} + | ||
+ | o(( x - x _ {0} ) ^ {n} ),\ {\textrm{ as } } x \rightarrow x _ {0} , | ||
+ | $$ | ||
− | + | the term $ o(( x - x _ {0} ) ^ {n} ) $ | |
+ | is called the remainder (in Peano's form). Given the asymptotic expansion | ||
− | + | $$ | |
+ | f( x) = a _ {0} + | ||
+ | \frac{a _ {1} }{x} | ||
+ | + \dots + | ||
+ | \frac{a _ {n} }{x ^ {n} } | ||
+ | + O \left ( | ||
− | + | \frac{1}{x ^ {n+} 1 } | |
+ | \right ) ,\ {\textrm{ as } } x \rightarrow + \infty , | ||
+ | $$ | ||
− | the remainder is | + | of a function, the remainder is $ O( x ^ {-} n- 1 ) $, |
+ | as $ x \rightarrow \infty $. | ||
+ | In the [[Stirling formula|Stirling formula]], which gives an asymptotic expansion of the Euler [[Gamma-function|gamma-function]], | ||
+ | $$ | ||
+ | \Gamma ( s + 1 ) = \sqrt {2 \pi s } \left ( | ||
+ | \frac{s}{e} | ||
+ | \right ) ^ {s} + O \left ( e ^ {-} s s ^ {s - 1 / 2 } \right ) ,\ {\textrm{ as } } s \rightarrow + \infty , | ||
+ | $$ | ||
+ | the remainder is $ O( e ^ {-} s s ^ {s-} 1/2 ) $. | ||
====Comments==== | ====Comments==== | ||
− | The remainder of an integer | + | The remainder of an integer $ a $ |
+ | upon division by a natural number $ b $ | ||
+ | is the number $ c $, | ||
+ | $ 0 \leq c < b $, | ||
+ | for which $ a= kb+ c $ | ||
+ | with $ k $ | ||
+ | an integer. See also [[Remainder of an integer|Remainder of an integer]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bleistein, R.A. Handelsman, "Asymptotic expansions of integrals" , Dover, reprint (1986) pp. Chapts. 1, 3, 5</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Spivak, "Calculus" , Benjamin (1967)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bleistein, R.A. Handelsman, "Asymptotic expansions of integrals" , Dover, reprint (1986) pp. Chapts. 1, 3, 5</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Spivak, "Calculus" , Benjamin (1967)</TD></TR></table> |
Revision as of 08:10, 6 June 2020
of an expansion of a function
An additive term in a formula approximating a function by another, simpler, function. The remainder equals the difference between the given function and its approximating function, and an estimate of it is therefore an estimate of the accuracy of the approximation.
The approximating formulas alluded to include the Taylor formula, interpolation formulas, asymptotic formulas, formulas for the approximate evaluation of some quantity, etc. Thus, in the Taylor formula
$$ f( x) = \ \sum _ { k= } 0 ^ { n } \frac{f ^ { ( k) } ( x _ {0} ) }{k!} ( x - x _ {0} ) ^ {k} + o(( x - x _ {0} ) ^ {n} ),\ {\textrm{ as } } x \rightarrow x _ {0} , $$
the term $ o(( x - x _ {0} ) ^ {n} ) $ is called the remainder (in Peano's form). Given the asymptotic expansion
$$ f( x) = a _ {0} + \frac{a _ {1} }{x} + \dots + \frac{a _ {n} }{x ^ {n} } + O \left ( \frac{1}{x ^ {n+} 1 } \right ) ,\ {\textrm{ as } } x \rightarrow + \infty , $$
of a function, the remainder is $ O( x ^ {-} n- 1 ) $, as $ x \rightarrow \infty $. In the Stirling formula, which gives an asymptotic expansion of the Euler gamma-function,
$$ \Gamma ( s + 1 ) = \sqrt {2 \pi s } \left ( \frac{s}{e} \right ) ^ {s} + O \left ( e ^ {-} s s ^ {s - 1 / 2 } \right ) ,\ {\textrm{ as } } s \rightarrow + \infty , $$
the remainder is $ O( e ^ {-} s s ^ {s-} 1/2 ) $.
Comments
The remainder of an integer $ a $ upon division by a natural number $ b $ is the number $ c $, $ 0 \leq c < b $, for which $ a= kb+ c $ with $ k $ an integer. See also Remainder of an integer.
References
[a1] | N. Bleistein, R.A. Handelsman, "Asymptotic expansions of integrals" , Dover, reprint (1986) pp. Chapts. 1, 3, 5 |
[a2] | P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126 |
[a3] | M. Spivak, "Calculus" , Benjamin (1967) |
Remainder. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Remainder&oldid=48507